Renewable Heat – UK Policy

Paul Chambers Budget manager and head of domestic RHI BEIS

IEA Renewable heating and cooling policy workshop, 7 February 2017

Department for Business, Energy & Industrial Strategy

Overview

- UK heat background
- The RHI
- Future options

Heat and energy use in the UK

Heat is the single biggest energy end use in UK

- Around a third of the UK's carbon emissions come from the energy used to produce heat.
- **44% of final energy consumed** in the UK is used to generate heat for domestic, commercial and industrial purposes.
- UK consumers spend £32 billion a year on heating.

Heat and energy use in the UK

The Committee on Climate Change estimate that heat related emissions need to reduce from their current levels to around 18MtCO₂e by 2050:

- Domestic and service sectors need to reduce to nearly zero
- Industry needs to reduce to <u>18MtCO₂e</u> (it is harder to decarbonise some of the heat used for industrial processes)

The Committee on Climate Change, 2013

Estimated UK emissions attributable to heating, 2013

Source: Unpublished estimate, Energy consumption in the UK, Government Emission Conversion Factors (BEIS)

UK – low level of Renewable Heat & Cooling

	2011	2012	2013	2014	2015
Renewable energy for H&C (ktoe)	1,674	1,925	2,433	2,536	3,037
Total energy consumption for H&C (ktoe)	53,569	57,988	59,262	52,689	53,867
% H&C energy from renewable sources	3.1%	3.3%	4.1%	4.8%	5.6%

- Long history of gas use with high grid access c. 85% of UK households
- Gas price relatively low
- Relatively low availability of biomass forest area
- Heat policy has focussed more on demand reduction through efficiency (condensing gas boilers, insulation) than fuel-switching

The Renewable Heat Incentive

- The non-domestic RHI has been operational since 2011, with the domestic RHI added in 2014
- The RHI provides financial incentives to install renewable heating in place of fossil fuels. It is available to households and non-domestic consumers to help bridge the gap between the cost of renewable heating systems and conventional alternatives
- The RHI supports a range of low carbon heat technologies main focus is off-gas-grid sites, and production of biogases that decarbonise the gas grid
- The incentive is paid as per kWh tariff for renewable heat produced
 7 years for households and 20 years for others. No up-front grant
- Non-domestic tariffs (per kwh) range from 1-3p (biogas); 2-5p (biomass); 2.5-9p (heat pumps) to 10.3p (solar thermal)
- Domestic tariffs (per kwh) range from 4.2p (biomass) to 19.7p (solar)

The RHI budget

	16/17	17/18	18/19	19/20	20/21
Budget (GBP)	£640m	£780m	£900m	£1010m	£1150m
Current estimate of committed spend	£547m	£645m	£674m	£699m	£718m
Non-domestic	£455m	£548m	£574m	£595m	£611m
Domestic	£91m	£97m	£100m	£104m	£107m
Figures may not sum due to rounding					

Total budget by 2041 will be >£20bn

Data from December 2016

Monthly budget cap publications can be found at <u>https://www.gov.uk/government/publications/rhi-mechanism-for-budget-management-estimated-commitments</u>

Non-domestic deployment

The last twelve months has seen a refocus of the non-domestic scheme away from small biomass and onto medium biomass, biogas and CHP. Fewer, larger installations.

Domestic deployment

Early deployment heavily driven by biomass, now ASHPs.

y MIII Statistics HOII	-uome.	SUC	76% c heat
Fechnology	Heat generated and paid for under the scheme GWh	Number of installations that have received payment ¹ Number	Capacity of installation that have received payment ¹ MIV
	4.5.47	42.252	1 457
Small biomass boller (<200 kW)	4,547	12,352	1,467
longe kierrees keiler (200-1000 kW)	3,103	1,785	957
Large biomass boller (>1000 kW)	1,715	40	211
Solar thermal (<200 kW)	4	229	4
Small water/ground source heat pumps (< 100 kW)	4/	501	14
Large water or ground source heat pumps (>100 kW)	89	103	52
Air Source Heat Pumps	8	175	5
СНР	30	5	22
Deep Geothermal	0	0	0
Biogas	162	117	53
Biomethane	2,162*	42	
* GWh equivalent			
Overall total	11,866	15,349	2,785

Key RHI statistics – domestic

ASHP: Half

the systems,

Carbon Abatement

Renewable Heat Committed

Based on committed heat from stock data, with renewable proportions applied by technology

RHI - Challenges

- Tariffs hard to get right
- Managing demand hard to balance budget control with consistent signals to market
- Additionality of heat uses has required regular changes to rules to ensure we support heat uses in line with policy intent
- Technology mix dominated by biomass, low deployment of heat pumps so far
- Is it creating sustainable markets for renewable energy technologies?

Degression

 Reducing a technology's tariff at pre-set thresholds – has successfully controlled expenditure but tends to bring deployment to a halt

Small biomass plants forecast expenditure, as at 30.11.2016

Charts like this and the underlying data are published monthly on the gov.uk website.

Degression announcements made quarterly

Long-term challenge of heat

- Our heat infrastructure is diverse and interdependent, comprising the gas grid, electricity networks, heat networks, appliances and building fabric.
- There are a wide variety of technologies which can deliver low carbon heat ranging from electric heat pumps and district heating networks,
- Replacing natural gas with hydrogen in the gas grid is also a possibility but raises issues of how to source H₂ in a low-carbon way – likely to require CCS
- A particular challenge is the large seasonal variation in space heating demand. Alternatives to natural gas heating will need to address the issues of storage and peak demand.

 "...overall [heat] demand is about 150% of total electricity and peak requirements in winter can be 5 or 6 times those for electricity." Imperial College Centre for Energy Policy and Technology report Managing Heat System Decarbonisation (April 2016)

> Courtesy of Imperial College. For illustrative purposes only, and based on actual half-hourly electricity demand from the national grid and an estimate of half-hourly heat demand

December

Low carbon heat infrastructure options

Thank You