

Session IV IEA work on CO₂-EOR to date

Paul Zakkour, Carbon Counts

IEA/OPEC CO₂-EOR Workshop Kuwait City, 7th February 2012

IEA flagship publications

• Energy Technology Perspectives (ETP)

• CCS series of publications

• World Energy Outlook (WEO)

Energy Technology Perspectives

- Launched at 2005 at G8 Summit (Gleneagles)
- Builds on *WEO Alternative Policy Scenarios and "BAPS"*, focussing on role of technology in reducing GHG emissions to 2050
- Now a biennial publication (2006, 2008, 2010...)
- Established "BLUE Map" scenario, which is widely used as the basis for global GHG reduction pathways

Source: IEA, Energy Technology Perspectives (2008a).

ETP on CO₂-EOR

INTERNATIONAL INTERVACE

ENERGY

Scenarios &

Strategie

TECHNOLOGY

PERSPECTIVES

TECHNOLOGY

0

- \Rightarrow CO₂-EOR could reduce costs of CCS
- \Rightarrow Could lead to negative emissions in some cases
- ⇒ Limited potential for storage relative to power plant emissions
- ⇒ US\$30-160 per tonne CO₂ revenue (@ US\$45 bbl). Must be considered in context of competing EOR technologies
- \Rightarrow CO₂-EOR could reduce costs of CCS,
- ⇒ Support early opportunities for demonstration
- \Rightarrow 5-23% additional hydrocarbon recovery possible
- \Rightarrow US\$35-40 per tonne CO₂ stored
- \Rightarrow Only driver for CCS in absence of
 - carbon price incentive

 \Rightarrow Only very limited consideration of the role of CO_2- EOR in facilitating CCS deployment

CCS publications

- Range of high quality publications produced over several years
- Dedicated IEA Carbon Capture & Storage Unit established in 2010

CCS publications on CO₂-EOR

- **2004** Prospects for CCS:
 - Included technical and financial review of EOR potential (from literature)
 - Highlighted distributional challenges between sources and EOR sinks
 - Concluded that EOR is important early opportunity for CCS
- **2005-07** CCS legal & regulatory issues. Limited coverage of EOR
- **2008** CCS Key Abatement Technology:
 - Further literature reviews of EOR potential
 - Concluded that EOR may provide some limited early opportunities and support early infrastructure development
- **2009** CCS Roadmap:
 - Becomes "blueprint" for CCS deployment worldwide. $\rm CO_2\text{-}EOR$ not specifically considered within analysis
- **2011** CCS Roadmap (Industry):
 - Highlighted importance of "high purity" sources linked to EOR for early demonstration
 - Concluded that enhanced national level analysis required to better understand EOR opportunity.
- **2012** Policy Strategy for CCS:
 - Highlighted role of "climate policy oriented EOR" compared to commercial EOR

World Energy Outlook

 IEA flagship publication providing "...authoritative source of energy market analysis and projections....insights into trends in energy demand and supply andenergy security, environmental protection and economic development"

WEO on CO₂-EOR

- CO₂ EOR last considered in depth in 2008 "Prospects for O&G production and climate change":
 - Estimated worldwide potential: 160-300 billion bbl incremental production to 2030 (7-14% of 2008 conventional reserves)
 - 80-130 bn bbl in ME region
 - 20-90 bn bbl in N Am
 - higher if greater uptake leads to lower cost (~500 bbl)
 - \$22-70 barrel marginal production costs
 - Base case: 9.8 Gt CO_2 stored through CO_2 -EOR by 2030 (~445 MtCO₂/yr). Would equal most of CCS Roadmap estimate for deployment over period
 - Carbon pricing will significantly alter cost curve for EOR (but with basic assumptions)

Broad trends in IEA analysis

- Linkages between CO₂-EOR and CCS have been historically emphasized as a critical driver for both technologies
- Assumption underpinned by broad top-down analysis based on oil production cost curve, and the role CO₂ pricing could play in changing oil production economics with CO₂
- Positive views on the role of CO₂-EOR in supporting CCS deployment as an "early opportunity" have been tempered over recent years based on the lack of new CO₂-EOR projects occurring
- Growing realisation that a better understanding of *technical*, *political* and *economic* factors necessary to calibrate estimates
- Growing realisation that an evaluation of specific and smarter policy interventions necessary to realise co-benefits of CO₂-EOR and CCS

Current work programme represents the first efforts of the IEA to undertake a comprehensive and systematic bottom-up analysis of the role of CO₂-EOR and CCS worldwide to address the knowledge gap

