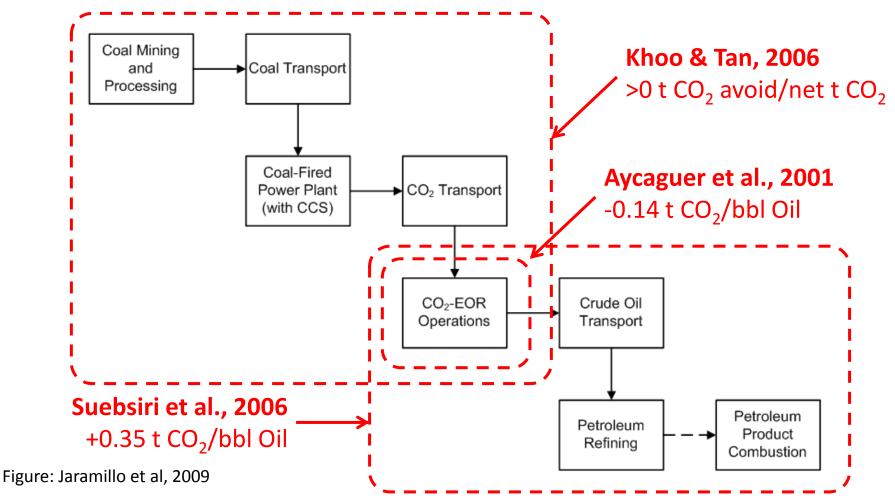


The role of CO₂-EOR in ongoing and future IEA analysis

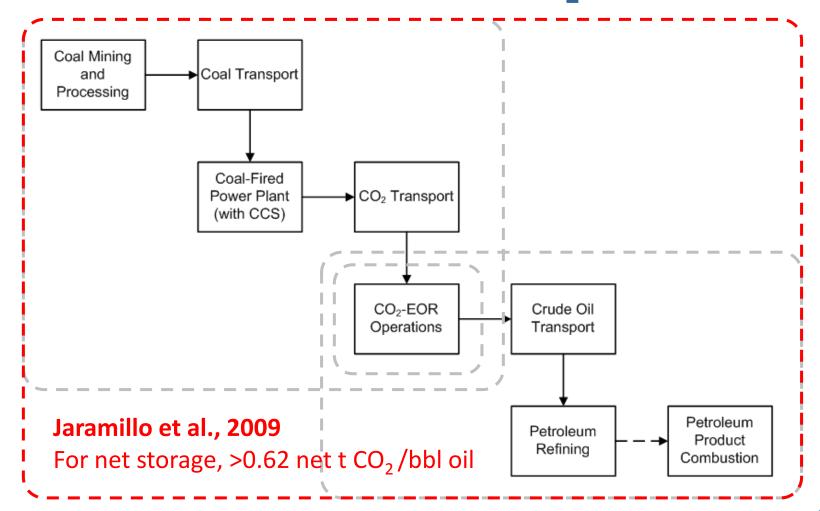
Sean McCoy IEA – OPEC CO₂-EOR Kuwait Workshop Kuwait City, Kuwait 7 February, 2012

Outcomes of CO₂-EOR analysis


- 1. A clear understanding of the global potential for CO₂-EOR to contribute to emissions reductions
- 2. Identification of unique considerations that need to be addressed to achieve emissions reductions
- 3. Identification and understanding of gaps and barriers that prevent development of projects
- 4. Sound recommendations for member countries to enable CO₂-EOR as climate policy option

This is work in progress. Your thoughts and suggestions are welcome.

CARBON CAPTURE AND STORAGE


Emissions from CO₂-EOR by parts

CARBON CAPTURE AND STORAGE

Cradle-to-grave emissions from CO₂-EOR

 \equiv

Emissions reductions through displacement

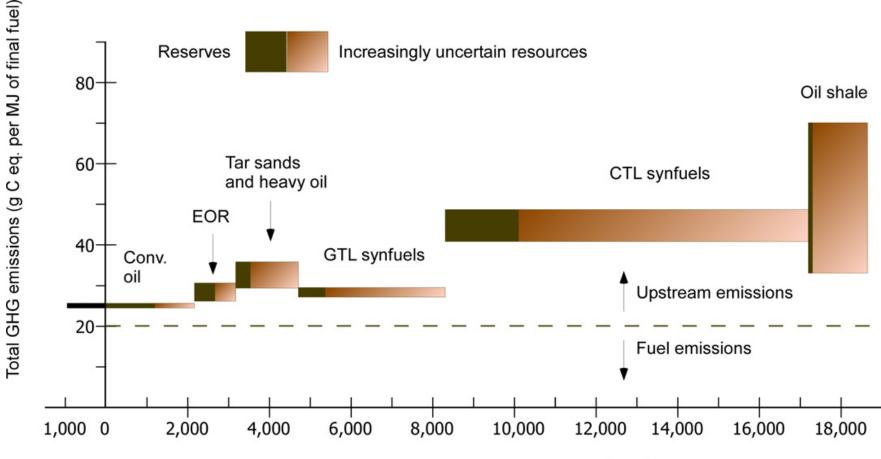
Marginal Barrel	Marginal Generation Displaced (kg CO ₂ e/MWh)	Emissions Reduction Efficiency			
Displaced (kg CO ₂ e/bbl)		Project 1	Project 2	Project 3	Project 4
Current Average Consumption- USA (529)	Current Average Generation-USA (652)	71%	68%	70%	73%
Canadian In- Situ SCO (600)	Uncontrolled IGCC (894)	140%	128%	137%	145%
	NGCC (425)	87%	75%	83%	92%
Saudi Arabian Light (521)	Uncontrolled IGCC (894)	94%	92%	93%	95%
	NGCC (425)	41%	38%	40%	42%
	Carbon-free Electricity (0)	-8%	-10%	-8%	-7%

McCoy et al, 2010

Important observations from past life-cycle assessment research

- 1. Emissions depend on boundaries:
 - a) Including emissions from oil production makes business-as-usual (BAU) CO₂-EOR a net emitter
 - b) Changes to design and operation of BAU CO₂-EOR could decrease the CO₂ footprint
- If energy-related emissions that would otherwise be produced from an equivalent system are displaced, CO₂-EOR reduces emissions
- Emissions reduction efficiency is a function of energy displacement and CO₂ utilization
 - a) Displacement of CO₂-intensive power and oil results in a larger emissions reduction than would otherwise occur

Attributes of CO₂-EOR operations necessary for qualification as storage


Unique policy considerations for CO₂-EOR

- Without the right energy and climate policies, displaced emissions may not remain displaced
- Large-scale uptake will link oil and carbon markets in a new way. Could changes in CO₂ supply impact oil prices?
- Under certain combinations of climate policy, CO₂-EOR could shift emissions from power to transport
- Increasing supplies of conventional oil in the near- to medium-term could prevent a move up the carbon supply curve in the long-term

CARBON CAPTURE AND STORAGE

The carbon supply curve and its implications

Farrell & Brandt, 2006

Potential for liquid hydrocarbon production (Gbbl)

Barriers to private investment in CO₂-EOR

BAU CO2-EOR	CO ₂ -EOR for Climate Change Mitigation
 Low valued investment option in IOC portfolios Lack of low cost CO₂ for injection in many places Competition with other EOR processes Mismatch in business cases for capture versus injection 	 Those for BAU CO₂-EOR, PLUS: No return on additional cost for storage Cost for monitoring, measurement, and verification Cost for ensuring long-term containment

Can incentive policies address these issues? If so, how?

Funding mechanism for CO₂-EOR as climate change?

- Under the Clean Development Mechanism (CDM) difficult issues have to be addressed relating to life-cycle emissions:
 - Baseline
 - Additionality
 - Project boundaries
- How will EOR figure into post-Kyoto mechanisms: e.g., NAMAs
- Technology specific multilateral funding vehicles: e.g., ADB-World Bank fund.

International Energy Agency

From issues to actions at the IEA: possible next steps

Engage with investors to better understand barriers to investment Quantitative Engage with understanding of oil developing market response to economies to develop additional; CO₂-EOR value propositions for production storage via CO₂-EOR Recommendations on the means by which policy Clarify treatment of **Background document** makers can align **CO₂-EOR under IPCC** summarizing these **G**reenhouse Gas increased oil issues with global **Inventory Guidelines** production and examples emissions reductions