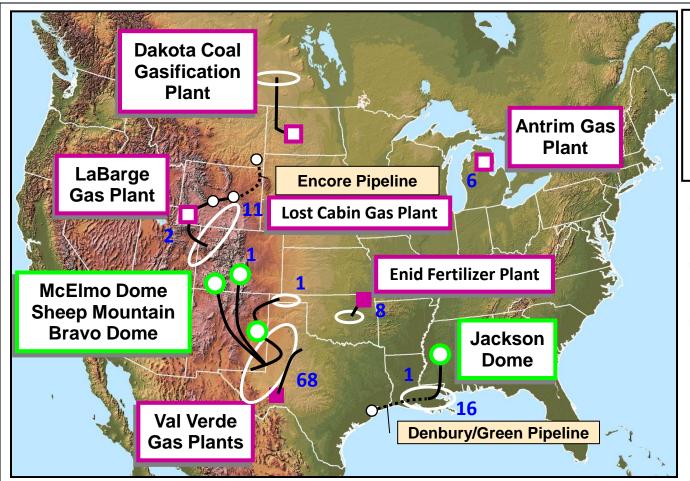


From CO₂-EOR to CCS: "Prospects and Challenges of Combining CO₂-EOR with Storage"

Presenter: Michael L. Godec

Advanced Resources International

IEA – OPEC CO₂-EOR Kuwait Workshop JW Marriott Hotel, Kuwait City 7th – 8th February, 2012

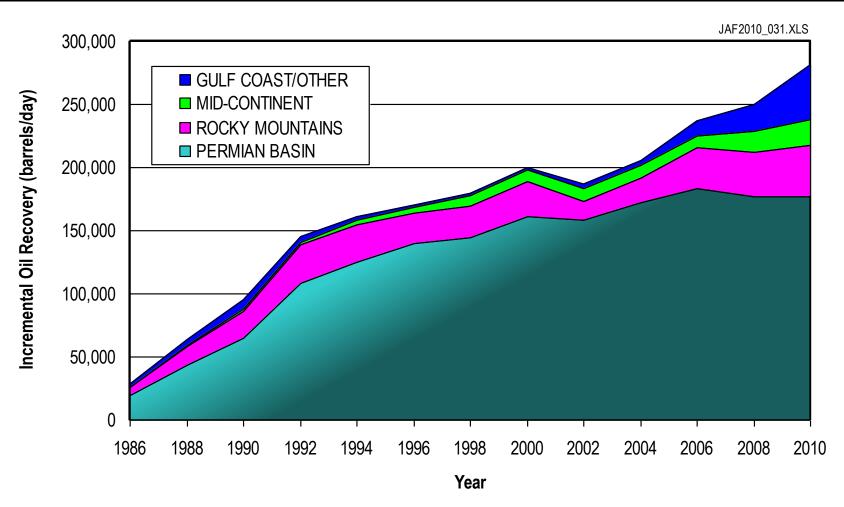

Main Topics of Presentation

- Objective: Addressing Common 'Myths'
 - EOR represents small fraction of the potential for storage
 - CO₂ is not stored during EOR
- Broad Benefits can be Realized
 - CO₂-EOR encourages CCS deployment
 - CCS helps realize the potential of CO₂-EOR

U.S. CO₂-EOR Activity – Oil Fields and CO₂ Sources

Number of CO₂-EOR
Projects
Natural CO₂ Source
Industrial CO₂ Source

Existing CO₂ Pipeline


CO₂ Pipeline Under Development

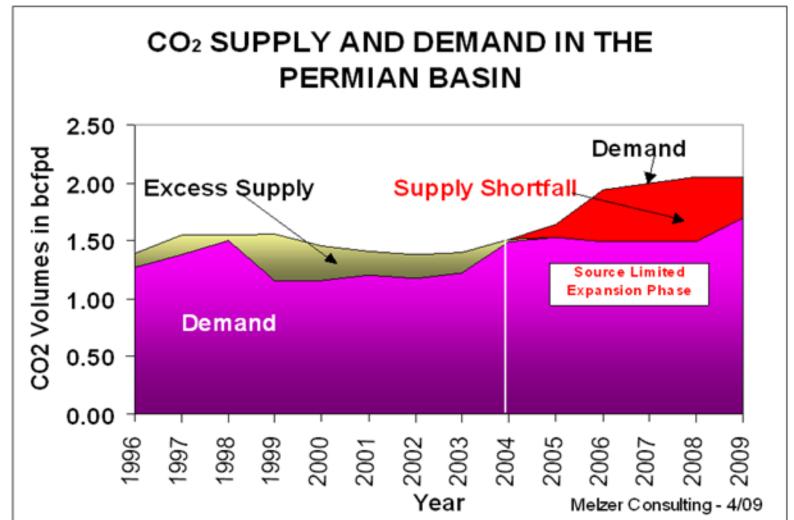
- Most CO₂-EOR activity currently in North America
- 114 projects produce 281,000 barrels per day in U.S.
- Additional projects planned to increase CO₂ supply to CO₂-EOR
 - Natural & anthropogenic
 - New CO₂ pipelines

Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2010 and other sources.

Growth Of CO₂-EOR Production in the U.S.

Source: Advanced Resources Int'l., based on Oil and Gas Journal, 2010.

Significant Volumes of CO₂ Are Already Being Injected for EOR in the U.S.


State / Province		CO ₂ Supply (MMcfd)	
for EOR / Storage	CO ₂ Source Type and Location	Geologic	Anthropogenic
Texas-Utah- New Mexico-Oklahoma	Geologic (Colorado-New Mexico) Gas Processing (Texas)	1,540	180
Colorado-Wyoming	Gas Processing (Wyoming)	-	320
Mississippi	Geologic (Mississippi)	900	-
Michigan	Ammonia Plant (Michigan)	-	15
Oklahoma	Fertilizer Plant (Oklahoma)	-	30
Saskatchewan	Coal Gasification (North Dakota)	-	150
TOTAL (MMcfd)		2,440	695
TOTAL (million tonnes per year)		47	13

^{*} Source: Advanced Resources International, 2009

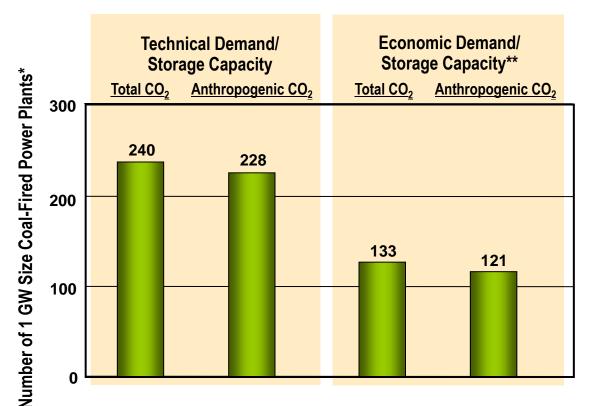
^{**}MMcfd of CO₂ can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 * 10³ (Mcf per metric ton)

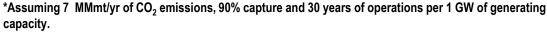
Since 2004, CO₂-EOR Demand for CO₂ has Exceeded CO₂ Supply in the Permian Basin

Oil Recovery and CO₂ Storage in the U.S. From "Next Generation" CO₂-EOR Technology*

Reservoir Setting	Oil Recovery*** (Billion Barrels)		CO ₂ Demand/Storage*** (Billion Metric Tons)		
	Technical	Economic**	Technical	Economic**	
L-48 Onshore	104	60	32	17	
L-48 Offshore/Alaska	15	7	6	3	
Near-Miscible CO ₂ -EOR	1	*	1	*	
ROZ (below fields)****	16	13	7	5	
Sub-Total	136	80	46	25	
Additional From ROZ "Fairways"	40	20	16	8	

^{*}The values for economically recoverable oil and economic CO₂ demand (storage) represent an update to the numbers in the NETL/ARI report "Improving Domestic Energy Security and Lowering CO₂ Emissions with "Next Generation" CO₂-Enhanced Oil Recovery (CO₂-EOR) (June 1, 2011).




^{**}At \$85 per barrel oil price and \$40 per metric ton CO₂ market price with ROR of 20% (before tax).

^{***}Includes 2.6 billion barrels already being produced or being developed with miscible CO₂-EOR and 2,300 million metric tons of CO₂ from natural sources and gas processing plants.

^{****} ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

U.S. Demand for CO₂: Number of 1 GW Size Coal-Fired Power Plants

^{**}At an oil price of \$85/B, a CO₂ market price of \$40/mt and a 20% ROR, before.

Reservoir Setting	Number of 1GW Size Coal-Fired Power Plants***		
	Technical	Economic*	
L-48 Onshore	170	90	
L-48 Offshore/Alaska	31	14	
Near-Miscible CO2- EOR	5	1	
ROZ**	34	28	
Sub-Total	240	133	
Additional From ROZ "Fairways"	86	43	

^{*}At \$85 per barrel oil price and \$40 per metric ton CO_2 market price with ROR of 20% (before tax).

Source: Advanced Resources Int'l (2011).

^{**} ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

^{***}Assuming 7 MMmt/yr of CO₂ emissions, 90% capture and 30 years of operation per 1 GW of generating capacity; the U.S. currently has approximately 309 GW of coal-fired power plant capacity.

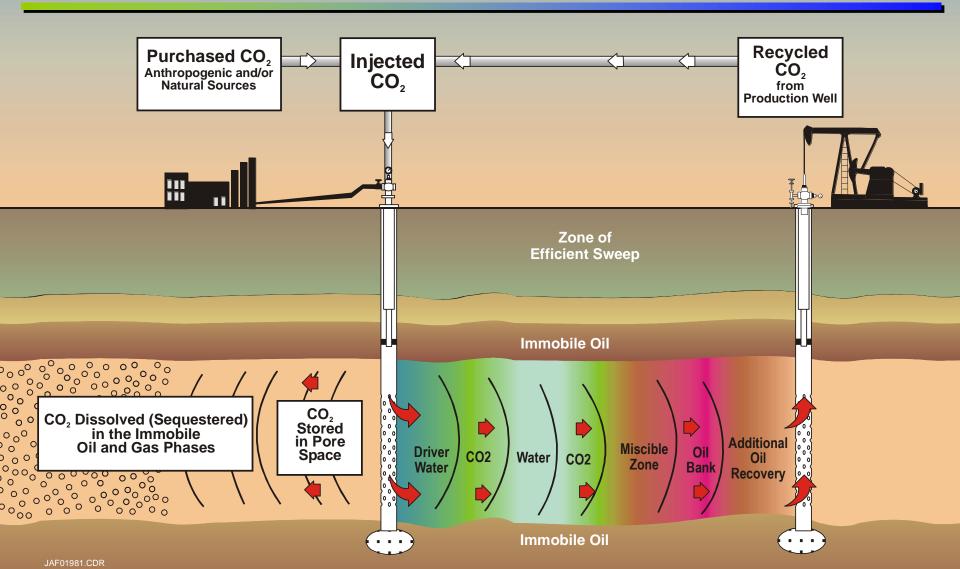
Assessment of Global CO₂-EOR Potential

Region Name	Basin Count
Asia Pacific	8
Central and South America	7
Europe	2
Former Soviet Union	6
Middle East and North Africa	11
North America/Other	3
North America/United States	14
South Asia	1
S. Africa/Antarctica	2
Total	54

Assessed 54 large world oil basins for CO₂-based Enhanced Oil Recovery

- High level, 1st order assessment of CO₂-EOR and associated storage potential, using U.S. experience as analogue.
- Tested basin-level estimates with detailed modeling of 47 large oil fields in 6 basins.

Technical Oil Recovery and CO₂ Storage Potential in World's Oil Basins* From "Next Generation" CO₂-EOR Technology


Region	CO ₂ -EOR Oil Recovery ("Next Generation" CO ₂ -EOR)	CO ₂ Storage Capacity ("Next Generation" CO ₂ -EOR)
	(Billion Barrels)	(Billion Metric Tons)
1. Asia Pacific	47	10
2. C. & S. America	93	21
3. Europe	41	10
4. FSU	232	50
5. M. East/N. Africa	595	142
6. NA/Other	38	11
7. NA/U.S.**	177	41
8. South Asia	-	-
9. S. Africa/Antarctica	74	16
TOTAL	1,296	301

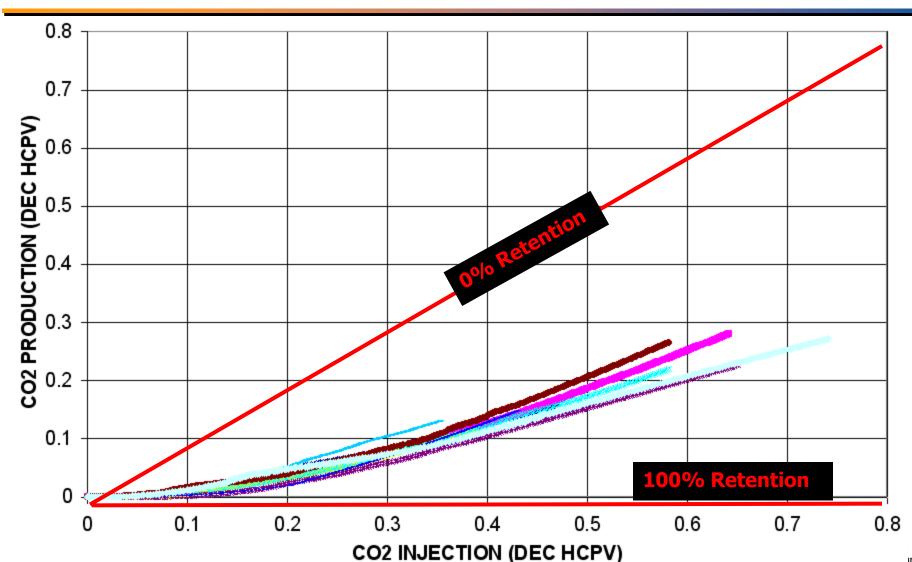
^{*} Includes potential from discovered and undiscovered fields, but not estimated future growth in discovered fields

^{**} Not including offshore & Alaska

Overview of CO₂-EOR Process

CO₂ RETENTION Industry's Historical Definition

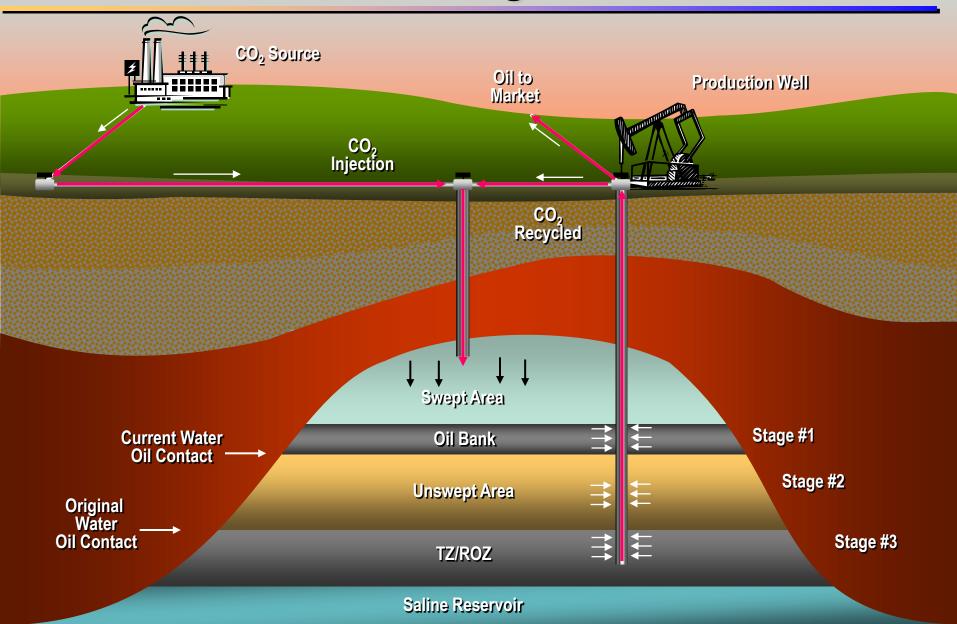
CO₂ Retention: amount of CO₂ injected in a reservoir that remains:


Question: Should the denominator more appropriately be CO₂ purchased or acquired?

In general, the CO₂ volume stored for EOR is approximately the volume initially purchased

^{*} Note that it is 'Total Injected Volumes' which Includes Recycled Volumes

Carbonate Comparison West Texas San Andres Formation



Alternative Approaches to Increase CO₂ Storage with CO₂-EOR

- Inject CO₂ earlier in project life
- Inject CO₂ longer
- Continuously inject CO₂ instead of alternating with water via WAG
- Inject and CO₂ into the residual oil/transition zone
- Inject CO₂ into other geologic horizons accessible from same surface infrastructure used for CO₂-EOR
- Produce residual water to "make more room" for CO₂.

Integrating CO₂-EOR and CO₂ Storage Could Increase Storage Potential

CCS Needs CO₂-EOR Benefits of Using CO₂-EOR to Accelerate CCS Deployment

- Additional Revenues Offset the Costs of CCS. Sale of captured CO₂ for EOR provides revenue that can offset the costs of CCS. The value of this offset is highly project dependent.
- Variety of Entities can Benefit from these Revenues. Can include oil producers, land owners, the sources of CO₂ emissions, the government, and the economy.
- CO₂-EOR Helps Overcome Other Barriers to CCS. Enables CCS projects to be implemented while "difficult issues" (e.g., pore space rights, public acceptance) are resolved.
- Increasing Energy Production. Productive use of captured CO₂ emissions industrial facilities could increase oil production.
- Oil Production with Lower CO₂ "Footprint." Production from CO₂-EOR has half the emissions of traditional production; optimizing for CO₂ storage results in an even smaller, and perhaps negative, "footprint"

CO₂-EOR Needs CCS

Achieving the Benefits of Increased Production from CO₂-EOR Requires CO₂

- Growth in production from CO₂-EOR is now limited by the availability of reliable, affordable CO₂.
 - There are more prospective CO₂-EOR projects than there is CO₂ to supply them
- If increased volumes of CO₂ do not result from CCS, then the benefits cited from CO₂-EOR may not be realized.
- Thus, not only does CCS need CO₂-EOR to ensure viability of CCS, but CO₂-EOR needs CCS to ensure adequate CO₂ to facilitate CO₂-EOR growth.
- This will become even more apparent as potential new targets for CO₂-EOR become recognized.

Current CCS Activities and Project Plans are Dominated by CCS Applications

- Of the 9 planned DOE CCS Demonstration Projects, 7 propose to utilize CO₂-EOR
- Worldwide, the Global CCS Institute reports 77
 large-scale integrated projects (LSIPs) at various stages of the asset life cycle
 - 34 (44%) are targeted for EOR.
- 8 of these projects are operating, and 4 are in the execution phase of the project life cycle
 - 5 of the 8 operating projects and 3 of 4 in execution are injecting CO₂ for EOR

EOR has Attractive Features for CO₂ Storage Relative to Saline Formations

- Much reduced footprint (perhaps an order of magnitude in area) for the underground CO₂ plume
- Oil production can lower storage technical risk because of lower reservoir pressure requirements for CO₂ storage
- Historical production operations provide:
 - Baseline of reservoir data and production history
 - Known trap and seal integrity tested over geologic time
 - Existing infrastructure at the site
 - Generally, local public acceptance for similar operations to CO₂ storage

Significant Challenges Still Remain

- Value proposition not always apparent
 - More challenging without a price on carbon
 - Including in the Clean Development Mechanism <u>may</u> help
- Old fields require major infrastructure; cost of system recapitalization is significant
 - US Permian basin projects support ~\$10-\$25/tonne delivered at injection pressure because they leverage infrastructure.
 - Offshore projects challenged even with "free CO₂," storage credits and high oil prices.
- The number of companies with CO₂-EOR experience is limited; BUT GROWING

Significant Challenges Still Remain (cont.)

- Balancing EOR field CO₂ requirements with CO₂ supply source
 - Requires new collaborations between entities that have not commonly collaborated before
 - Understanding full project life-cycle energy and carbon balance
- Regulatory frameworks are evolving regarding the transition of EOR to storage, but are not there yet
 - Issues include long term monitoring requirements, pipeline siting and access, long-term liability, and pore space rights
- EVERY STORAGE RESERVOIR IS UNIQUE!
 - No "one size fits all" solutions

Concluding Thoughts and Observations

- 1. CO₂-EOR Offers Large CO₂ Storage Capacity Potential. CO₂-EOR in oil fields can accommodate a major portion of the CO₂ captured from industrial facilities for the next 30 years.
- 2. CO₂ is Stored with CO₂-EOR. The amount stored depends on the priority placed on maximizing/optimizing storage.
- 3. CCS Benefits from CO₂-EOR. The revenues (or cost reduction) from sale of CO₂ to EOR helps CCS economics, overcomes some barriers, while producing oil with a lower CO₂ emissions "footprint."
- **4. CO₂-EOR Needs CCS.** Large-scale implementation of CO₂-EOR is dependent on CO₂ supplies from industrial sources.
- 5. Both CCS and CO₂-EOR Still Need Supportive Policies and Actions. Supportive policies and pre-built CO₂ pipelines would greatly accelerate the integrated use of CO₂-EOR and CCS.

Office Locations
Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420
Fax: (703) 528-0439

Houston, Texas 11490 Westheimer, Suite 520 Houston, TX 77042 Phone: (281) 558-6569 Fax: (281) 558-9202

Distribution of Economic Value of Incremental Oil Production from CO₂-EOR (Given Fiscal Regime in the U.S.)

Notes		Oil Industry	Private Minerals	Federal/ State	Power Plant/ Transportation	U.S. Economy
1	Domestic Oil Price (\$/B)	\$100.00				
2	Less: Royalties	(\$17.50)	\$14.60	\$2.90		
3	Production Taxes	(\$4.10)	(\$0.70)	\$4.80		
4	CO2 Purchase Costs	(\$17.50)			\$17.50	
5	CO2 Recycle Costs	(\$12.00)				\$12.00
6	Other O&M Costs	(\$8.00)				\$8.00
7	Amortized CAPEX	(\$4.00)				\$4.00
	Total Costs	(\$63.10)			-	
	Net Cash Margin	\$36.90	\$13.90	\$7.70	\$17.50	\$24.00
8	Income Taxes	(\$12.90)	(\$4.90)	\$17.80	?	?
	Net Income (\$/B)	\$24.00	\$9.00	\$25.50		

- 1. Assumes \$100 per barrel of oil.
- 2. Royalties are 17.5%; 1 of 6 barrels produced are from federal and state lands.
- 3. Production and ad valorem taxes of 5%, from FRS data.
- 4. CO₂ cost of \$50/metric ton, including transport; 0.35 tonne of purchased CO₂ per barrel of oil.
- 5. CO₂ recycle cost of \$20/ metric ton; 0.6 tonne of recycled CO₂ per barrel of oil.
- 6. Other O&M/G&A expenses from ARI CO₂-EOR cost models.
- 7. CAPEX from ARI CO₂-EOR cost models.
- 8. Combined federal and state income taxes of 35%, from FRS data.

JAF2011 008.XLS

Distribution of Economic Value of Incremental Oil Production from CO₂-EOR (Given Fiscal Regime in the U.S.)

		Oil Price		
	Recipients of Revenues from CO ₂ -EOR	\$75/B	\$100/B	
1	Oil Industry	\$15.50	\$24.00	
2	Private Mineral Owner	\$6.80	\$9.00	
3	Power Plant/CO ₂ Transporter	\$14.00	\$17.50	
4	Federal/State Governments	\$17.70	\$25.50	
5	U.S. Economy	\$21.00	\$24.00	
	TOTAL	\$75.00	\$100.00	

JAF2011_008.XLS

^{*}Range reflects: (1) 30 billion barrels of oil and 8.8 Gt of CO₂ demand using State-Of-The-Art CO₂-EOR at \$75/B oil price/\$40 mt CO₂ sales price and (2) 58 billion barrels of oil and 20 Gt of CO₂ demand using Next Generation CO₂-EOR at \$100/B oil price and \$50/mt CO₂ sales price.

^{**}Total demand reduced by 2.1 Gt from natural sources and gas processing plants.

Existing CO₂ Pipelines (U.S. Permian Basin)

Life Cycle Analyses of the Integration of "Next Generation" CO₂ Storage with EOR

	"Next Generation"	"Second Generation" CO₂-EOR & Storage		
	CO ₂ -EOR	CO ₂ -EOR	Storage	Total
CO ₂ Storage (million metric tons)	32	76	33	109
Storage Capacity Utilization	22%	53%	23%	76%
Oil Recovery (million barrels)	92	180	-	180
% Carbon Neutral*	74%	90%	-	129%

^{*} Includes the entire life-cycle CO₂ emissions, including those associated with CO₂-EOR operations, crude transport, refining, and the combustion of the incremental oil produced

