

Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe

Estimating macroeconomic impacts Experiences from a EU-H2O2O project

Institut

Johannes Thema

7 March 2018 IEA Multiple Benefits Workshop, 5-7 March 2018 French Foreign Affairs Ministerial Conference Center

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 649724. This document reflects only the author's view. The Agency is not responsible for any information it contains.

Project background & objectives

Quantification of multiple impacts of EE

Coordinated by COOP Wuppertal

- Quantification & monetization of multiple impacts
- By EU member state & 21 EEI actions
- Common framework scenarios: based on 21 energy efficiency improvement (EEI) actions
- Extended Cost-Benefit analysis

Air pollution air pollutants health eco-system	Resources material footprint abiotic/biotic energy/non-energy unused extraction	Social welfare disposable income health productivity	Macro economy employment/ GDP public budget Fossil fuel/ETS prices Terms of Trade	Energy system energy system costs energy security				
MANCHESTER 1824 The University of Manchester	Wuppertal Institut	MANCHESTER 1824 The University of Manchester	Copenhagen Economics	Universiteit Antwerpen				
Funded by EU Horizon 2020 EE12 (GA 649724, approx 1M€)								

March 2015 – May 2018

Multiple impact modelling

Overview

		Impacts modelling			
Input data	Impact category	Modelling approach	Impacts covered (additional savings)		
	Air pollution	GAINS model (IIASA)	Air pollutants (NOx, PM10, PM2.5, SO2, VOC)		žI
			Affected ecosystem area (acidification, eutrophication)	▶ (COMB
energy savings	MANCHESTER 1824 The University of Manchester		Human health (through air pollution)		
	Resources	Life-Cycle modelling (Material Input per service unit/MIPS)	Ecological footprint		n l
			(Biotic materials, fossil fuels, metal ores, minerals, unused extraction)		ine
additional data: stocks, scenario levels	Social welfare	Socio-economic modelling	Health from indoor pollution		too
etc.			Health from building conditions (asthma, excess winter deaths)		₽
			Labour productivity (residential/tertiary buildings, transport)		
	Economy	Short-term: Input- Output modelling	Employment		
			GDP	►	
investment costs			Public budget		
← -→	Economy	Long-term: CGE modelling	Fossil fuel prices		
			EUA prices		
	Comparison CE		Structural effects		
4	Energy system	LEAP modelling	Avoided combustion/investment in combustion plants		
L C	Universiteit Antwerpen		De-rated capacity margin		
	Energy security	LEAP modelling	Energy intensity		
			Fossil fuel imports		
Universiteit Antwerpen	Universiteit Antwerpen		Energy security index	∞	Wuppertal Institut

Our objective

Assess macroeconomic effects of a more ambitious EE policy

A) Business cycle effects in 2018

The policy is estimated to increase the EU GDP by 35 billion EUR in **2018** in countries with positive output gap

A) Business cycle effects in 2018

The policy is estimated to increase the EU GDP by 35 billion EUR in **2018** in countries with positive output gap

A) Business cycle effect 2030

The policy is estimated to have the potential of creating more than 2 million job-years in 2030

This effect can be interpreted as a benefit in the countries that happen to be in an economic downturn in 2030

B) Structural effects 2030

Reductions in fossil fuel prices, and gains in terms-of-trade

EU fossil fuel prices

Energy savings reduce prices

- COMBI initiatives reduce gas consumptions directly and coal consumption indirectly through lower electricity demand
- Demand for crude oil is primarily reduced through switch in transport modes and less overall transport use

EU countries are net importers of fossil fuels

 And will therefore on average benefit from reduced fossil fuel prices

Modelling issues

Modelling issues

Inclusion of other MIs & feedback loops

Examples for other MI-inputs

- energy costs → net incomes → expenditures
- better health \rightarrow
 - labour productivity \rightarrow commercial productivity
 - lower health costs → public budgets/taxes
- lower energy system costs → energy prices
- air pollution \rightarrow ecosystems \rightarrow agricultural output

Examples for feedbacks

- higher net incomes, employment, GDP →
 - poverty \rightarrow investment in EE
 - health
 - additional energy demand (rebound)
- Lower energy prices \rightarrow
 - disposable income/poverty
 - incentives for investment/fuel switch

Modelling issues

Model flaws

- IOM: predictability of output gaps
- GEM: problematic equilibrium assumptions
- Disaggregation levels (countries, sectors)
- Exclusion of MIs
- feedback loops
 - model-internal: energy prices \rightarrow incomes \rightarrow ...
 - to MIs: see previous slide

Level of modelling detail/disaggregation

Example: Public budget

COMBI IOM vs. complex interconnections

Example complexity

Modelling issues

Modelling issues

COMBI:

 \bigcirc

 \bigcirc

1

Aggregation of indicators (e.g. in CBA)

Overlap danger: GDP = Gross Domestic Product

- Monetized employment
- Public budget
- Other impacts: health, productivity, resources, energy system
- \rightarrow but these usually not included in economic modelling!

Macro-economic impacts Modelling issues

Need for Integrated Assessment Model for multiple impacts quantification?

Thank you

Johannes Thema

johannes.thema@wupperinst.org

Wuppertal Institute for Climate, Environment and Energy Research Group Energy, Climate and Transport Policy

Calculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe

→ launch on 17 May 2018

FOLLOW US!

Websites <u>https://www.combi-project.eu</u> <u>www.wupperinst.org</u> On Twitter <u>@COMBI_project</u> <u>@wupperinst</u>

NEWSLETTER: subscribe at <u>http://combi-project.eu</u>

Please enter your email-address to receive news and updates as soon as they are released.

Email SUBMIT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 649724. This document reflects only the author's view. The Agency is not responsible for any information it contains.