

CCUS Moving Ahead: Recent Technical Advances

John Gale

General Manager

IEA Greenhouse Gas R&D Programme

IEA-MOST Workshop

Advances in Deployment of Fossil Fuel Technologies

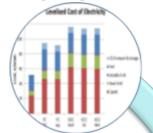
Wednesday 25th June 2014

Beijing, China

What is our remit?

All Greenhouse Gases – Focus on CO₂

Our Remit Covers


Fossil Fuels & BioCCS

Power Sector and Major Industrial sectors

What do we do?

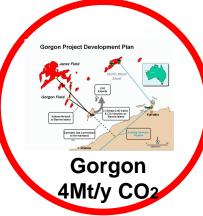
Assessing Mitigation Options

- Focus our R&D CCS

Our Core Activities Are: Tracking Capture Technology Developments/Costs

Commercial Application of CCS (to date)

Weyburn 2.5 Mt/y CO2


In-Salah
1.2 Mt/y CO2

150MW

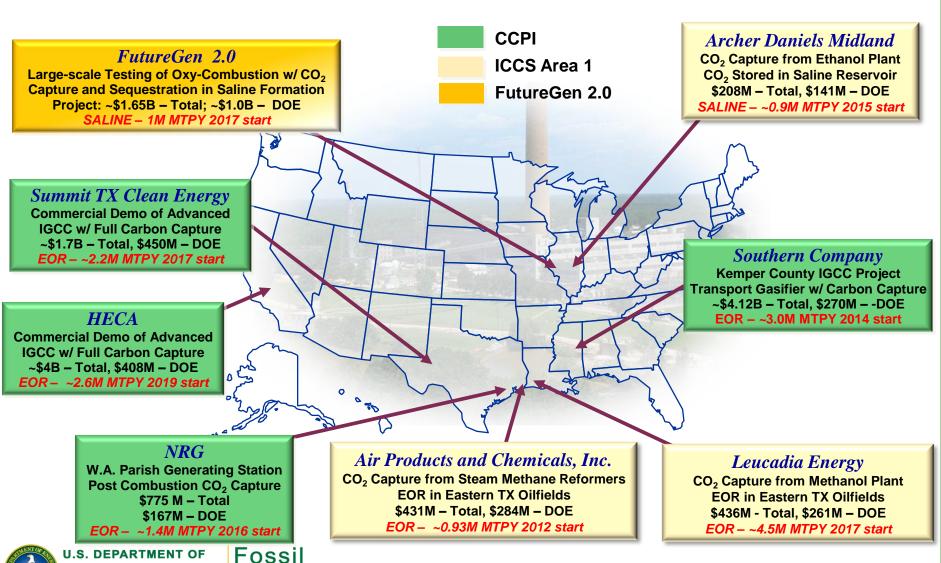
e

Snohvit 0.7Mt/y CO₂

350km overland pipeline

160km sub sea pipeline

- Major Scale up in Storage experience
- 600MWe power plant
- Pressure Management involved


1996 1998 **2000** 2002 **2004** 2006 **2008** 2010 2012 2014 2016 2018

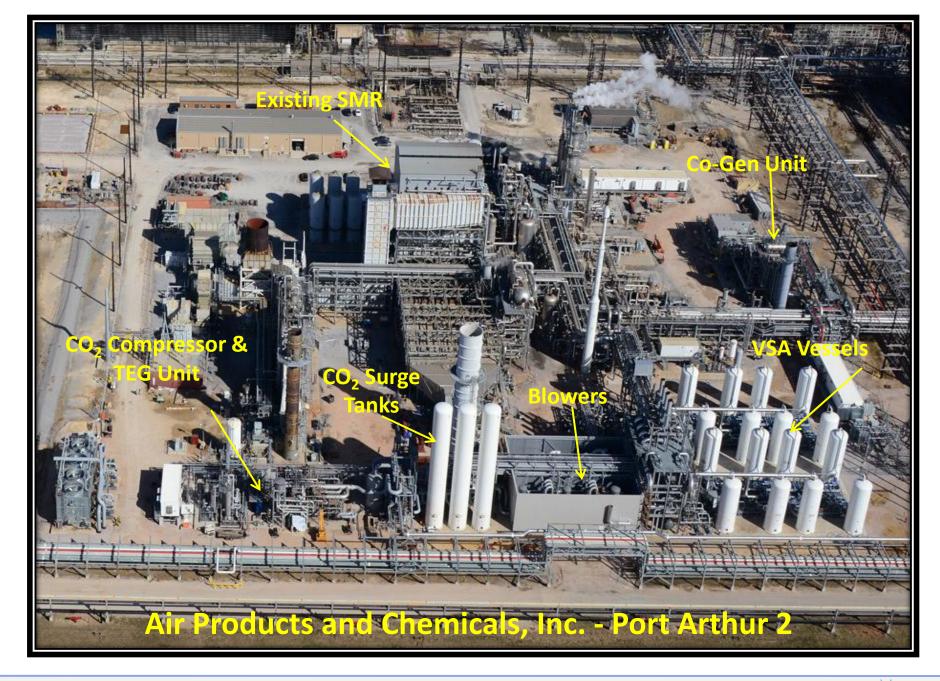
Boundary Dam, 110MWe

Major CCS Demonstration Projects Project Locations & Cost Share

ENERGY

Air Products and Chemicals, Inc. ICCS Area 1 Steam Methane Reforming with CO₂ Capture

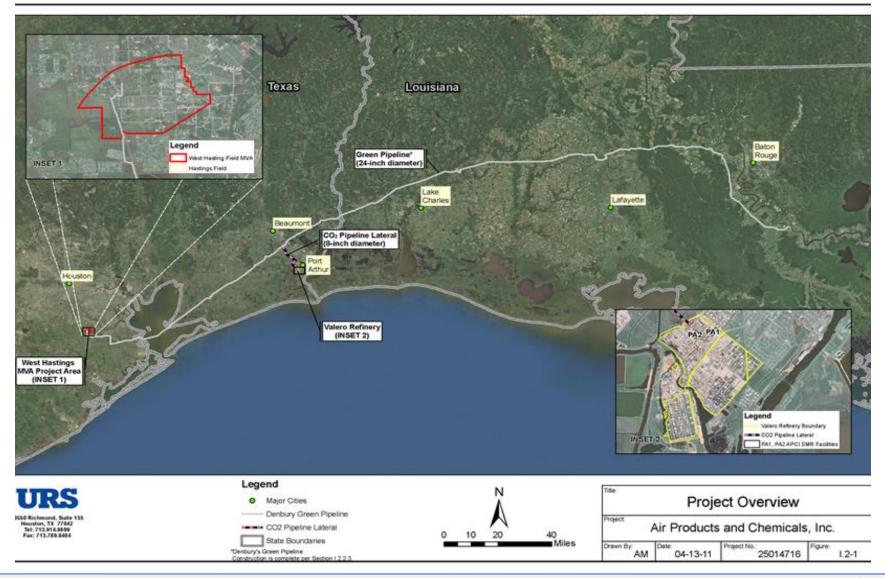
- Port Arthur, TX (Hydrogen plant at Valero Refinery)
- 90%+ CO₂ capture (Vacuum Swing Adsorption) from 2 steam-methane reformers (SMRs) yielding ~925,000 tonnes CO₂/year
- ~30 MWe cogeneration unit to supply makeup steam to SMRs and operate VSA and compression equipment
- CO₂ to Denbury "Green" pipeline for EOR in Texas at West Hastings oil field
- Total Project: \$431 MM; DOE Share: \$284 MM (66%)


Key Dates

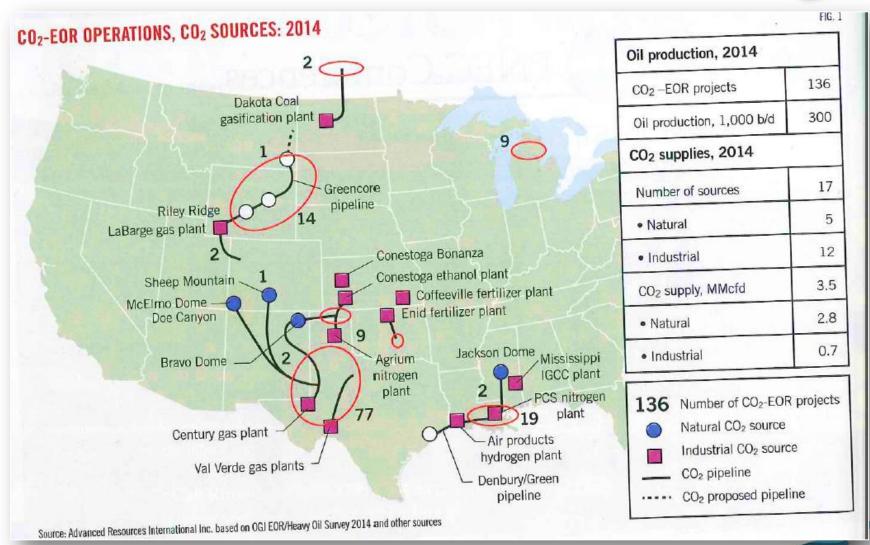
- Phase 2 Awarded: Jun 15, 2010
- FEED completed: Nov 2010
- Permit By Rule (PBR) and Standard Air Permits issued: May 2011
- NEPA FONSI: Jul 2011
- Construction started: Aug 2011
- Operation started: Dec 2012

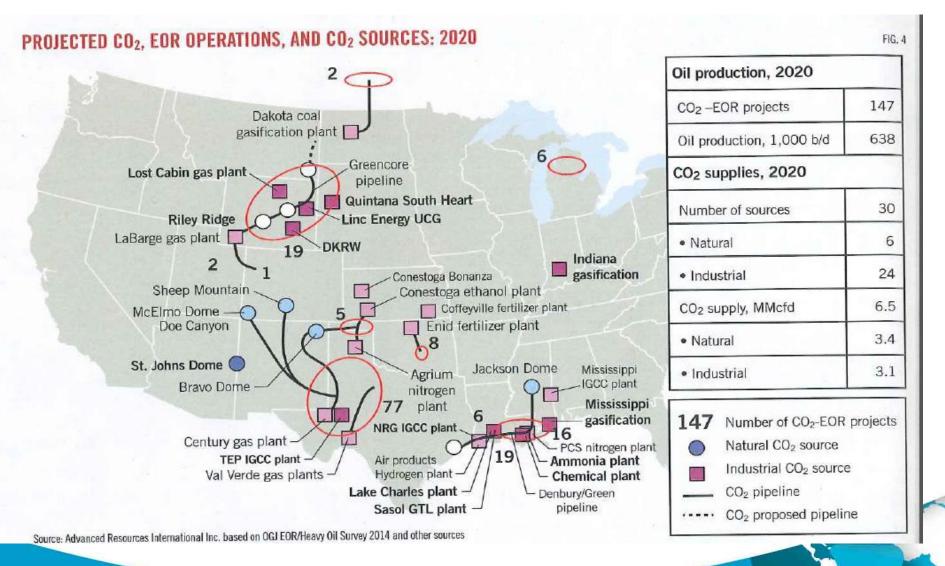
Status

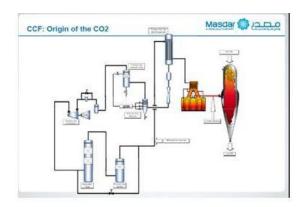
- PA-1 initiated operation: Mar 3, 2013
- PA-2 initiated operation: Dec 16, 2012
- Full capacity achieved: Apr 2013
- CO₂ compressor trip; damage to internals; May 29,
 2013; CO₂ compressor restart: July 1, 2013
- Has operated at >100% of design when necessary
- 1MM tonnes CO₂ delivered on 4/24/14
- 1,111,076 tonnes CO₂ delivered as of 6/9/14



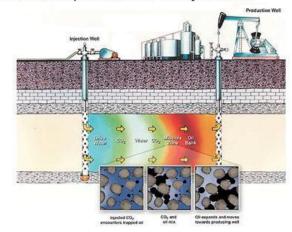
CO₂ Transportation to Sequestration Site


(from Final Environmental Assessment)


US Industrial CCS Drivers

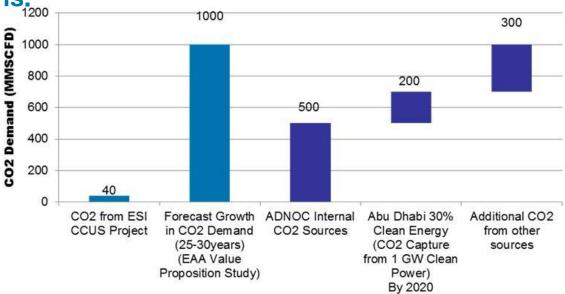

CO2-EOR Driving Expansion Of Industry CCS.

ESI CCS Project Technical Overview


CO2 Source (ESI) and Capture

CO2 Transportation

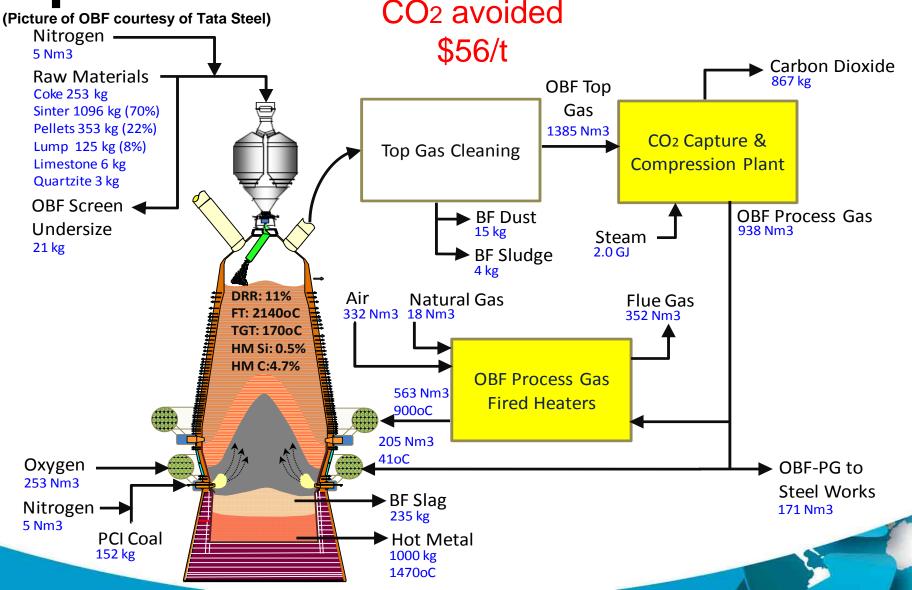
CO2 Compression & Dehydration


CO2 Injection in Rumaitha & Bab fields

Abu Dhabi CCS: Future Potential

- CO₂ as an EOR agent has been endorsed:
 - Success of the ESI CCS Project and Rumaitha / Bab Injection are key to future development.
- Changing landscape in Abu Dhabi with potential CO₂ targets for field testing and development:
 - CO₂ capture linked to ADNOC field demand and performance;

 Whilst preliminary, the EAA CCS Value Proposition study forecast a growing CO₂ demand in the next 25-30 years, based on ADNOC estimations.


Some Examples of CCS Research in Steel Industry

- ULCOS Project Europe
 - Developing oxy blast furnace with top gas recycle and capture – pilot scale blast furnace
- Japan COURSE 50 Project
 - Demonstrate post combustion capture from blast furnace – 30tpd pilot scale
- Korea
 - Demonstrate ammonia scrubbing of blast furnace gas, 2nd stage pilot testing (~10tpd)

Oxy-Blast Furnace Operation

CCS Research in Cement Industry

- European Cement Research Association (ECRA)
 - Phased development project for pilot scale demonstration of oxy fuel firing of cement kiln in late 2013.
- NORCHEM/CLIMIT & ECRA
 - Pilot scale project for post combustion capture on cement kiln in 2013/14
 - O Also testing:
 - □ Fixed bed absorbers & Membranes

CO₂ Capture at Cement Plants

Oxy-combustion Pilot Plant Project
 Feasibility of oxy-combustion at cement plants investigated

- Féasibility of oxy-combustion at cement plants investigated by Lafarge, FLSmidth and Air Liquide
- Pre-calciner pilot plant at Dania, Denmark successfully modified and operated with oxy-combustion
 - 2-3t/h raw meal (~1t/h CO₂)
 - Pre-calciner accounts for 90% of CO₂ from carbonate decomposition and 60% of fuel-derived CO₂ from a cement plant
- Feasibility and costs of retrofitting oxy-combustion calciner to Lafarge commercial cement plant at Le Havre was assessed
 - €62/t CO₂ captured (consistent with IEAGHG studies)
- Technology now ready to move into the demonstration phase
 - Next stage would be a 1-2 year FEED study
 - Currently no viable business case for CCS at European cement plants

www.GHGT.info

October 5 - 9
TWO THOUSAND FOURTEEN
AUSTIN, TX – USA

Technical Programme

- Two technical sessions
 10 papers on CCS in Industry
- 20 industry CCS papers in poster sessions
- One panel discussion session on Industrial CCS

AUSTIN TX

Key dates

- Registration opened
- Early bird closes

7th March 2014

13th June 2014

Thank you, any Questions?

Contact me at: john.gale@ieaghg.org

Website: www.ieaghg.org

Linkedin Linkedin: www.linkedin.com/groups/IEAGHG-4841998

twitter: https://twitter.com/lEAGHG

facebook Facebook: <a href="https://www.facebook.com/pages/IEA-Greenhouse-Gas-pages/lea-greenhouse-Gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-greenhouse-gas-pages/lea-gas-

RD-Programme/112541615461568?ref=hl