Current development situation of Coal to SNG in China

Chunqi Li

Datang International Chemical Technology

Research Institute Co., LTD.

Jun 24, 2014

Outline

Background

2

3

4

5

Coal to SNG Technology Route

Key Technology Development in China

Coal to SNG Projects in China

Technology Developing Trends and Challenges

Background

0

China's Energy Production Structure in 2013

China's Energy Consumption Structure in 2013

Year

The dominant role of coal in energy supply will keep unchanged in a long period. The dependence of NG supply on import grows quickly.

Background

Background

Coal to SNG via methanation is an effective and clean way to utilize coal and reduce the gap between the supply and consumption of natural gas .

SNG Production Units and Technologies			
Unit		Technology	
Gasification	Fixed bed	Lurgi, BGL	
	Fluidized bed	U-Gas, TRIG, HTW, Winkler	
	Entrained flow bed	Shell, GSP, HT-L, Choren, TPRI	
		GE, E-GAS,OME, Tsinghua, East China University of Science and Technology	
WGS	Sulphur tolerant shift		
Purification	Lurgi, Linde, Dalian University of Technology		
Methanation	Lurgi, Topsoe, Davy		
Waste Water Treatment	Anaerobic biochemical process, UASB, AO process, Adsorption, Ultrafiltration, Nanofiltration, RO, BAF		

Fixed Bed Gasifier

Slurry Gasifier

Coal to SNG Technology Route

- Fixed Bed Process (Linder, RMP, ICI)
- Fluidized Bed Process (Bureau of Mines, Bi-Gas, Comflux)

	Characteristics and App	lications of		
Lurgi, Davy and Topsøe Processes				
Process	Characteristics	Applications		
LURGI	 Catalyst: G1-86HT T: 280-650°C High-pressure super heated Stream Low recycle flow Low pressure drop High conversion High energy efficiency 	the Great Plains Synfuels Plant, USA		
DAVY	 Catalyst: CRG-S2S, CRG-S2C T: 250-700°C Middle-pressure super heated Stream Low recycle flow Low pressure drop High conversion High energy efficiency 	 Fuxin project, Liaoning, China Keqi project, Inner Mongolia, China Xinwen Project, Xinjiang, China 		
Topsøe	 Catalyst: MCR-2X, PK-7 T: 250-700°C High-pressure super heated Stream Low recycle flow Low pressure drop High conversion High energy efficiency 	 Huineng Project, Inner Mongolia, China Qinghua Project, Xinjiang, China 		

Key Technology Development in China

Key Methanation R&D Progresses in China

Catalysts

- ●3000~5000 Nm³/d SNG side stream test at high temperature (> 620 °C)
- •120,000Nm³/h SNG production from coke-oven gas (COG)

Processes

Adiabatic fixed bed reactor process

●3000-5000 Nm³/d SNG side stream test at high temperature(> 620 °C)

●30000 Nm³/h SNG production from COG

Isothermal reactor process

•18000 Nm³/h SNG production from COG

Since 2006, the methanation catalysts and process technologies have been developed quickly.

Key Technology Development in China

Key Methanation R&D Progresses in China

Datang International Chemical Technology Research Institute	3000-5000 Nm ³ /d SNG side stream test
Dalian Institute of Physical Chemistry	3000-5000 Nm ³ /d SNG side stream test
Dalian Catalytic Engineering Technology Ltd.	20000 Nm ³ /h SNG production from COG
The Northwest Research Institute of Chemical Industry	10000 Nm ³ /h SNG production from COG
Wuhan Kelin Chemical CO., Ltd.	120000Nm ³ /h SNG production from COG
ENN Group Co., Ltd.	25000Nm ³ /h SNG production from COG
Southwest Research & Design Institute of Chemical Industry	-
Shenhua Group Co., Ltd.	-
Shanghai Chemical Building Materials Co., Ltd.	-
Taiyuan University of Technology	-
Nanjing GoodChina Chemical Technologies CO., Ltd.	1000h stability test

Key Technology Development in China

Datang 3000-5000Nm³/d SNG Side Stream Test

- The side stream test has been stably operated more than 2000 hours since March, 2014.
- Based on the results of side stream test , the 100,000 Nm³/d SNG pilot plant is being constructed.

the First Coal to SNG Plant

Based on the results from Lurgi and SASOL, the Great Plains Synfuels Plant was commissioned in North Dakota, USA

- 14 Lurgi Mark IV fixed bed gasifiers
- Followed by WGS, rectisol and methanation units.
- Designed to produce 3.54 million Nm³/day SNG, after to 4.81 million Nm³/day.
- 3MPa,250-550°C, multi -adiabatic fixed bed reactor, BASF and Johnson Matthey catalysts

Coal to SNG Projects in China

- According to the 12th fiveyear plan, the annual SNG production capability will reach to 15~18billion Nm³ by 2015.
- More than 10 coal to SNG projects have been built or planned.

Basic Information of the Approved SNG Projects				
Item	Datang Keqi Project	Datang Fuxin Project	Huineng Inner Mongolia Porject	Qinghua Xinjiang Project
Scale (billion Nm ³ /a)	4.0	4.0	1.6	5.5
Coal Type	Lignite	Lignite	Low sulfur and ash coal	Long flame coal
Gasification Type	Fixed Bed	Fixed Bed	Fluidized Bed	Fixed Bed
Gasification Process	Crushed Coal Pressurized Gasification	Crushed Coal Pressurized Gasification	Coal-Slurry Gasification	Crushed Coal Pressurized Gasification
Status	Plant phase-I operating normally	Under construction	Plant phase-I under test run	Plant phase-I operating normally

SNG Projects Preliminarily Approved by Government

NO.	Project	Scale (billion Nm ³ /a)
1	CPI Yili SNG project ,Xinjiang	Total Capacity
2	Guodian Xinganmeng SNG project, Inner Mongolia	>60 billion Nm ³ //a
3	Xinmeng Energy comprehensive utilization of coal	8.0
4	Xinao underground gasification	0.20
5	CNOOC Datong SNG project, Shangxi	4.0
6	CNOOC Utilization of Coal, Inner Mongolia	12.0
7	Zhundong Wucaiwan SNG project, Xinjiang	12.0
8	Zhundong Dajin SNG project, Xinjiang	4.0
9	Zhundong Xiheishan SNG project, Xinjiang	6.0
10	Zhundong Kamusite SNG project, Xinjiang	4.0
11	Zhundong Hefeng SNG project, Xinjiang	4.0

Datang Keqi SNG Project

Item	Characteristics
Capacity(billion Nm ³ /a)	4.0
Coal Type	Lignite
Gasification Type	Lurgi crushed coal pressurized gasification
Air Separation	Domestic
Sulphur Tolerant Shift	Domestic
Rectisol	Domestic
Methanation	DAVY process
Product Gas Price	¥2.75 /Nm ³

Progresses of Datang Keqi SNG Project

- > Put into production on Dec 18, 2013, and began to supply SNG to Beijing .
- Successfully solved the gasifier corrosion .
- Optimized waste-water treatment process to reach near-zero waste water discharge.
- Currently plant is running stably.
- Plant phase-II is under construction and scheduled to put into production in 2015.

Coal to SNG Projects in China

Progresses of Datang Keqi SNG Project			
Item	National Standard (First)	National Standard (Second)	SNG
CH4, vol.%			98.38
CO ₂ , vol.%	≤2.0	≤3.0	0.21
H ₂ , vol.%			1.13
N ₂ +Ar, vol.%			0.28
$H_2S~(mg \cdot m^{-3})$	≤6	≤20	Undetectable
Total sulphur (mg·m ⁻³)	≤60	≤200	Undetectable
HHV (MJ . m ³)	>36	>31.4	>37

Progresses of Datang Keqi SNG Project

Progresses of Datang Keqi SNG Project

Currently the plant is operating at 60% load stably, and have supplied about 0.3 billion Nm³ SNG to Beijing.

Demonstration Significances of Keqi SNG Project

- Technical feasibility of SNG production from low-rank coal in China.
- Economical benefits of the coal to SNG plant.
- Safety, reliability and stability of crushed coal pressurized gasifier operating with lignite.
- Safety, reliability and stability of crushed coal pressurized gasifier operating at 4.0MPa.
- > The effects of acid and alkali corrosion on the equipment.
- > The effects of organic sulfur on the methanation catalysts.
- > Whether the waste water treatment system can reach zero discharge?
- Whether the lignite to SNG plant can satisfy the national environmental policies?

Technology Developing Trends and Challenges

SNG Technology Developing Trends

Gasifier

 China's own gasification technologies will play an important role along with the development of coal to SNG industry.

Methanation Catalyst

- More China's own methanation catalysts will be used in coal to SNG industry.
- ✓ To make SNG plant operation more stable, sulfur tolerant methanation catalyst is a promising technology.

Methanation Process

- ✓ China's own methanation process will be used in coal to SNG industry.
- ✓ Fluidized bed reactor process is an attractive technology.
- \checkmark One-step methanation process is a promising technology.

Technology Developing Trends and Challenges

Challenges of China's SNG Industry

Technology

- ✓ Methanation processes are still heavily depended on imported technologies.
- ✓ Research on CO_2 capture and utilization is urgent.

Production

- ✓ Safe, stable, long term and full load operation is crucial for the enterprise and market.
- ✓ The fluctuation of market demand affects SNG production.
- ✓ To obtain higher economical benefits, it is essential to strengthen the deep processing and utilization of by-products.

Policy

✓ SNG pipeline transportation and price mainly depends on government's policy.

Thank you!

Program Progress-Catalyst

Program Progress-Process

External Total Methanation Processes-

External Total Methanation Processes-

- High temperature catalyst(CRG)
- ✓ High conversion

- ✓ Low recycle flow
- ✓ High energy efficiency

From 1980s, CRG catalysts have been applied to produce SNG in the Great Plains Synfules plant.

External Total Methanation Processes-

TREMP[™] stands for Topsøe's Recycle Energy efficient methanation Process and is a heat recovery concept, which produces high pressure superheated steam.