

Unconventional Gas Development Mitigating Environmental Risk

The "Age of Gas"

Natural gas is taking a larger role in global energy mix

Percent of Primary Global Energy Production

"Age of Gas" Outlook '12 -'25

(Bcm per year)

Global growth 36% '12 to '25

Key drivers

- Unlocking new gas supply sources
- Need for environmental mitigation
- Price competitiveness ... Asia & EU
- Gas network growth

Growing shale gas supply in the US

Major unconventional gas sources

Red: shale gas

Blue: other unconventional gas

Large potential

Current Production in 2008: 9.9 Bcfd

14% of N. American Production

+ Additional between 2008 and 2010: 5 Bcfd

+ Additional between 2010 and 2015: 8.4 Bcfd potential to be 25% of N. American production by 2015

Source: GE Energy outlook 2009

Public Concerns Intersect with Industry Operations

Water Impacts

- Industry uses a lot
- Industry doesn't recycle enough
- Injection wells are bad

Air Impacts

- Methane leaks
- General GHG issues
- Flaring

Community Impacts

- Noise
- Dust
- Traffic

The social license to operate is the critical element

GAS & OIL TECHNOLOGIES IMPLEMENTING AGREEMENT

Three approaches to balancing energy imperatives with environmental concerns

Good business practices

Advanced Technology

Smart regulations

Unconventional is safe today, but can be better tomorrow!

Good business and operational practices

Leasing

Contracts

Set backs

Water treatment

Well integrity

Operational timing

Technology Solutions

Water

- Less, not fresh or an alternative
- Recycle more
- Less injection

Air

- Maintenance
- Use new technology
- Monetize the gas

Community

Power to Lift

R&D to find substitutes to fresh water is needed!

Solutions for unconventional O&G

Coal Seam Gas

Recovery & Brine

- Environmental discharge
- Evaporation pond availability
- Brine volumes & disposal

Current Status

- 150MLD installed
- Mobile systems for gas wells
- Piloting beneficial brine soln's

Shale Gas
Produced Water

Water Disposal

- OnePass filtration
- Biocide alternative
- Tank cleaning, pump changes

Current Status

- Piloted successfully
- Validated cost \$0.07/bbl
- More effective control

Shale Gas
Produced Water & Flow Back

Water Disposal/Supply

- Thermal ZLD (mobile/central)
- Brine disposal & transport
- Source water mobile UF

Current Status

- Mobile evaporators operating
- Source Water UF piloted
- UF cost 10% ↓ vs. biocide

Water

Air

Community

- Less, not fresh or an alternative
- Recycle more
- Less injection

- Maintenance
- Use new technology
- Monetize the gas

Power to Lift

How much methane leakage is too much?

Oilfield Power Generation &

Edwarte Hierstied to be Flexible, Scalable, Economic, & Reliable

- Mobile / temporary power generation from 1 MW to +20MW
- Utilization of field gas as primary fuel improves economics & environment
- Modularized purpose built power management reduces grid degradation
- OPEX side procurement models free up CAPEX for value add investment
- Microgrid systems that provide complete power control/ assurance
- RM&D optimizes response to ever evolving power conditions across

GE Power & Water

GE Oil & Gas

GE allows operators more control & flexibility in their power/ production choices

Oil field diesel-to-gas drill rig power

GE's gas engines solutions are creating value today...

Jenbacher J320

- ✓ Rated output:1007 kW Lean burn
- ✓ Installations on both field gas & LNG
- 1st U.S. EPA certified for mobile & stationary
- ✓ Up to 37.2% electrical efficiency
- ✓ Up to 25% reduced emissions
- Over 20 installed in N.
 America as of 2012

Waukesha VHP 7044

- ✓ Rated output: 1200 kW
- ✓ Rich burn
- Fuel flexible for variable gases
- ✓ Up to 31.2% electrical efficiency
- ✓ Up to 25% reduced emissions
- ✓ First units shipped for 1Q 2013

- Up to 60% lower operating costs
- Up to 25% lower
 NOX/CO emissions

Lean burn (without load bank)

Marcellus shale, Pennsylvania, USA

- 6 x J320 engines
- 1st U.S. EPA certified technology for mobile and stationary drilling
- Operating on LNG
- Up to 60% lower fuel costs compared to diesel
- Emissions reduction up to up to 25%

Technology Solutions

Water

- Less, not fresh or an alternative
- Recycle more
- Less injection

Air

- Maintenance
- Use new technology
- Monetize the gas

Community

Power to Lift

Industry operations in communities cause conflict

Trucks for Fuel ... Trucks for Water

Smart Regulations

A GE White Paper

<u>Goals</u>

- Support the development of natural gas resources
- Promote adoption of GE technologies

In the US, community engagement is essential

GAS & OIL TECHNOLOGIES IMPLEMENTING AGREEMENT

Three approaches to balancing energy imperatives with environmental concerns

Good business practices

Advanced Technology

Smart regulations

A balanced approach will maintain the social license

Thank You

