Energy Technology Perspectives 2014

IEA Global Industry Dialogue and Expert Review Workshop

Paris, October 7

© OECD/IEA 2013

Cement break out group

- ETP 2014 preliminary results feedback
 - Production, energy use, fuel mix shifts
- Energy market changes and impact in
 - Fuel mix
 - Regional production shifts
 - Regional industrial competitiveness
- Views on BATs values
- Emerging technologies status, expected progress
 - Sector specific emerging technologies
 - CCS demonstration and deployment needs and prospects
 - Which role H2 can play in the future?
- ETP Industry model improvement \rightarrow data availability
- ETP 2015 potential topic discussion → The role of industry in the climate negotiations

2014

Cement BATs

		Specific thermal energy use	Specific electricity consumption [kWh/t cement]			Clinker to cement ratio		
Source	Year	[GJ/t clinker]	Portland	Fly ash	BF slag	Portland	Fly ash	BF slag
Current BAT Tracking Clean Energy Progress 2013	2013	3.0		89-95			0.7	
Worrell, et al. <i>Berkeley National</i> Laboratory ¹	2008	2.85	59-62	52-57	57-65	0.95	0.65	0.35
EU BAT Conclusions ²	2013	2.9-3.3	-		-			
Madlool, et al. <i>Renewable and</i> <i>Sustainable Energy</i> <i>Reviews</i> ³	2011	2.72 (world's best)	65 (world's best)		-			

1 "World Best Practice Energy Intensity Values for Selected Industrial Sectors"

2 Commission Implementing Decision of 26 March 2013, Official Journal of the European Union

3 "A critical review on energy use and savings in the cement industries"

icea International Energy Agency © OECD/IEA 2013

Sector specific Emerging Technologies

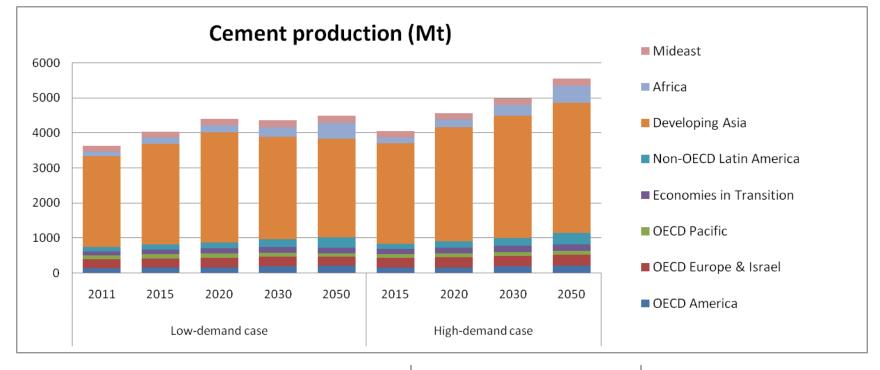
Cement

- Identify and classify suitable alternative fuels
- Clinker substitutes properties analysis and assessment of regional availability

- Cement: 531 Mt CO2 captured (25% of direct CO2 sector emissions without capture)
- IEA CCS Roadmap analyses actions to accelerate deployment

The role of Hydrogen

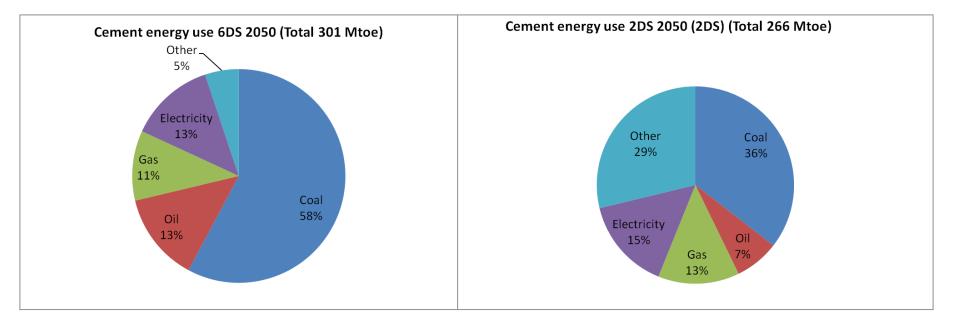
- Is there room for a greater use of H2 in Industry?
 - Current H2 generation cost makes it too valuable to be used as fuel
 - Additional burdens: H2 combustion impact on process operating parameters, requirements for equipment modification leading to a significant investment



Model improvement: data requirements

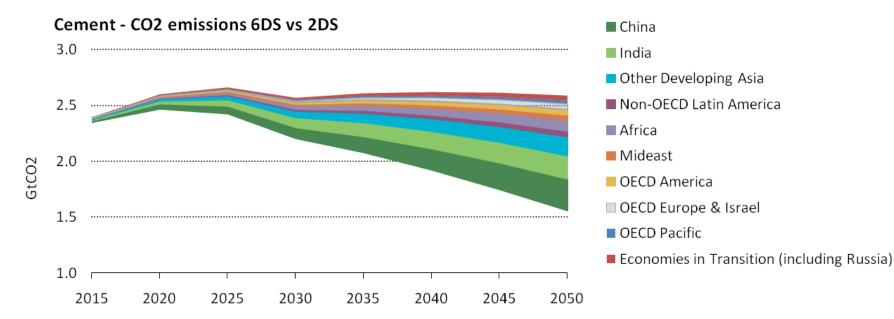
- Start conversion to a different platform, future structural changes:
 - Capacity vs production \rightarrow level of capacity utilisation
 - Capacity characterization by plant size categories
 - Full segregation of energy use by process requirements, heat/elec generation (CHP) and separate heat generation
 - Separate modeling of waste heat recovery potentials
 - Segregation of biomass, waste and renewable energy sources
 - Improve technologies capital and operational costs assessment
- Waste heat recovery potential by sector
 - Cement industry analysis through IEA India Cement Roadmap →
 550 MW existing potential

Cement - Production



Major Cement production growth	2050 vs 2011 low demand			
growth				
Developing Asia	63%			
Africa	10%			
Non-OECD Latin America	6%			

Cement - Energy use



Fuel share in energy use change	2050 2DS vs 6DS low demand
Coal	-22%
Oil	-6%
Gas	+2%
Electricity	+2%
Other	+24%

Note: Other includes: heat, combustible biomass, waste and other renewables.

Cement - Direct CO2 emission reductions

Major CO2 emission reduction contributions	6DS vs 2DS (2050) low demand
China	28%
India	20%
Other Developing Asia	16%

