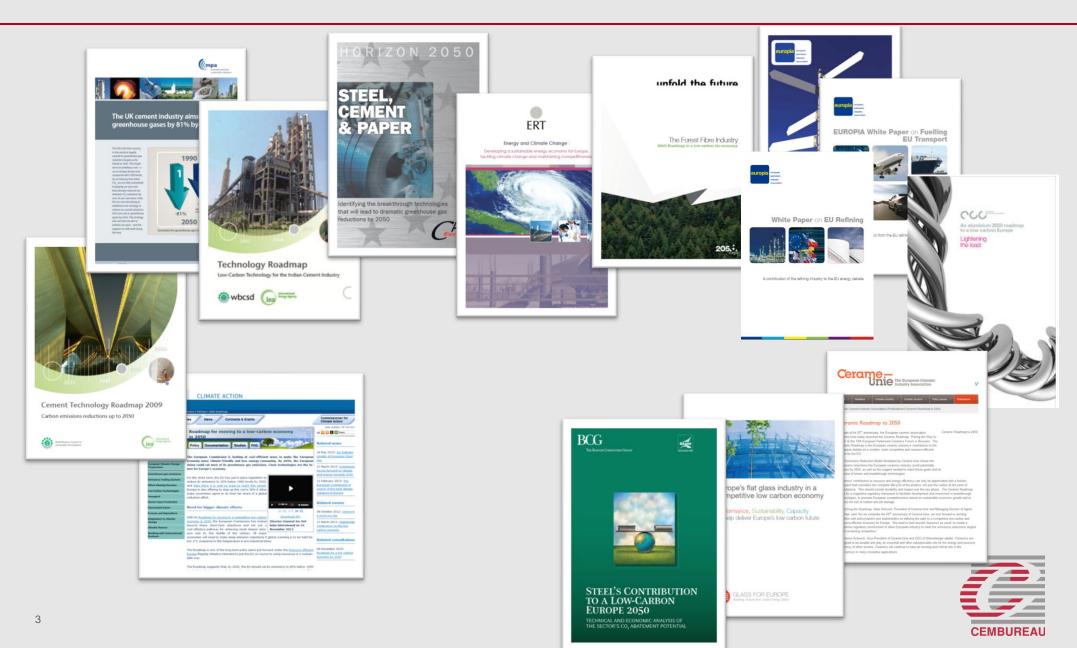
2050 LOW CARBON ECONOMY ROADMAP

IEA Global Industrial Dialogue and Expert Review Workshop 7 October 2013

By Claude Loréa – CEMBUREAU Deputy Chief Executive – Industrial Policy Director


SETTING THE SCENE – EU POLICY

- Ambitious EU Targets
 - Low Carbon Economy Roadmap by 2050: -80%
- Resource Efficiency Roadmap by 2050:
 All resources = sustainably managed
 - Climate change milestones = reached
 - Biodiversity & ecosystem services = substantially restored
- Energy Roadmap by 2050:
 Decarbonisation is feasible

SETTING THE SCENE – THE OTHERS...

WHAT LIES BEHIND OUR ROADMAP

- An aspirational vision
- Positive contribution
- Highlight our potential
- Underline our needs

• And, above all, to be constructive

FINAL TOOL

Interactive web-based tool

http://lowcarboneconomy.cembureau.eu/

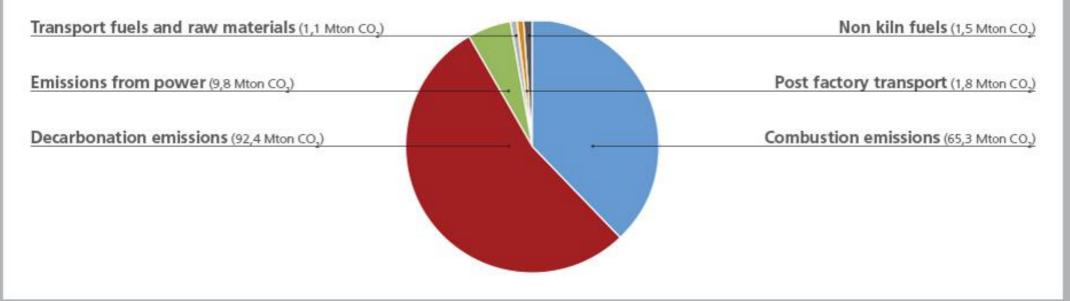
- Divided up into digestible, bite-size sections
- Development: CEMBUREAU-Morris & Chapman-CAG

╋

Summary leaflet with key elements

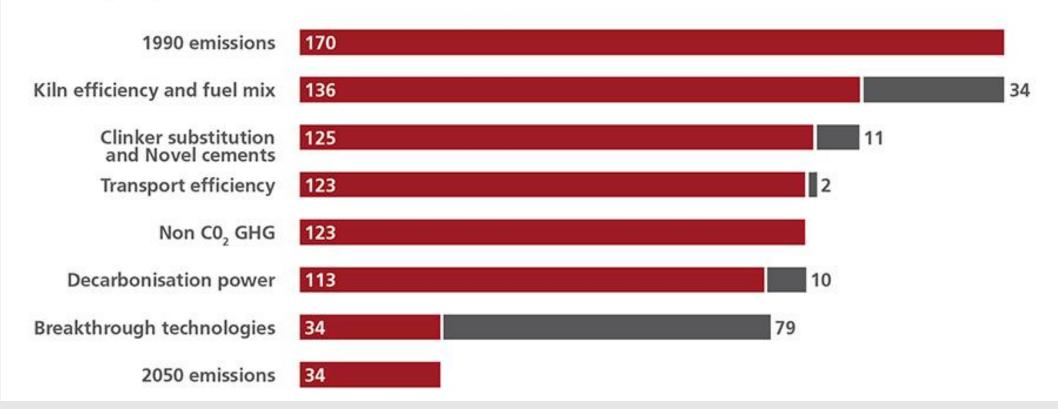
FIVE PARALLEL ROUTES

Resource efficiency	Energy efficiency	Carbon sequestration & reuse	Product efficiency	Downstream
 Alternative Fuels Raw Material Substitution Clinker Substitution Novel Cements Transport Efficiency 	 Electrical Energy Efficiency Thermal Energy Efficiency 	 Carbon sequestration & reuse Biological Capture 	Low carbon concrete	 Smart buildings & infrastructure Recycling concrete Recarbonation Sustainable construction


OUR MODEL

- Production has been normalised (2050 equals 1990)
- Power sector assumed to be fully decarbonised
- 60% of kiln energy will be AFR. 40% of which will be biomass
- Average clinker capacity of 5000 tonnes/ day i.e. a doubling of today's capacity
- 3.3 MJ/tonne with by-pass rate of 5 to 10%. Actually means 2.5 MJ/tonne fossil fuels consumption
- 5% derived from novel cements at assumed CO₂ rate of 50% of EU ETS Benchmark
- Factory made cement non-clinker content of 70%

1990 EMISSIONS


The source of our emissions in 1990

EMISSION REDUCTIONS

Multiple paths to emissions reduction

www.cembureau.eu

RESOURCE EFFICIENCY

- Alternative fuels
 - Replacing a large part of traditional fuel sources with biomass or waste
- Raw material substitution
 - Replacing raw natural resources with waste and by-products from other processes
- Clinker substitution
 - Replacing clinker with alternative materials in cement grinding (reducing clinker to cement ratio)
- Novel cements
 - Potential of new or novel cement types currently under development

ENERGY EFFICIENCY

- Electrical energy efficiency
 - Continuous improvement of the production process to lower the amount of electricity used
 - ! Deploying CCS would increase electricity consumption by 50 to 120%
- Thermal energy efficiency
 - Continuous improvements to production facilities have halved energy consumption since the 1960s
 - Waste heat recovery systems being investigated

CARBON SEQUESTRATION & REUSE

- Initial results show currently available technologies (oxyfuel/ post combustion) could capture 90% of CO₂ emissions
- Captured carbon to be transported to a storage site, valorised, or used to grow algae,...
- Carbon capture would increase production costs by 25 to 50%, require substantial investments and require the use of additional electricity
- Carbon Capture and Storage (CCS) is only worthwhile if the CO₂ transport infrastructure and storage sites are suitable and approved for that purpose

PRODUCT EFFICIENCY

- Low carbon concrete
 - Using high performance cements to optimise cement use per tonne of concrete
 - Locally sourcing of aggregates
 - Optimising admixtures and concrete composition at the concrete mixing stage

DOWNSTREAM

- Smart building and infrastructure development
 - New buildings can be built with deconstruction rather than demolition in mind
- Recycling concrete
 - Using crushed concrete in construction
- Recarbonation
 - At the end of its working life, concrete can be crushed (increasing the exposed surface area) thereby increasing the recarbonation rate
- Sustainable construction
 - Thermal mass of concrete
 - Concrete roads reduce fuels consumption of vehicles

