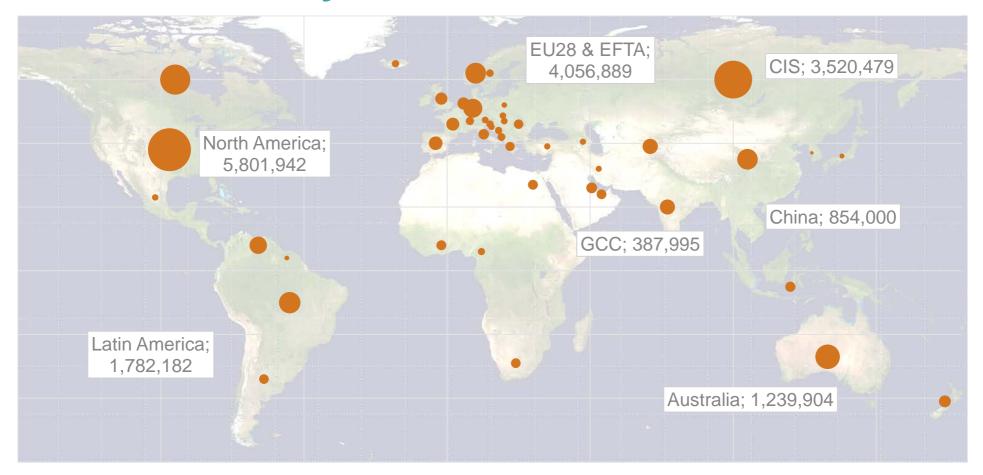
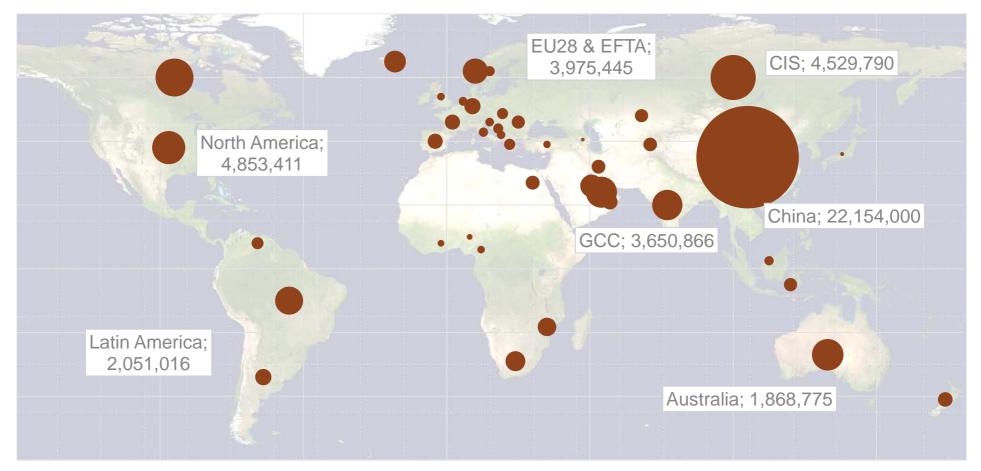
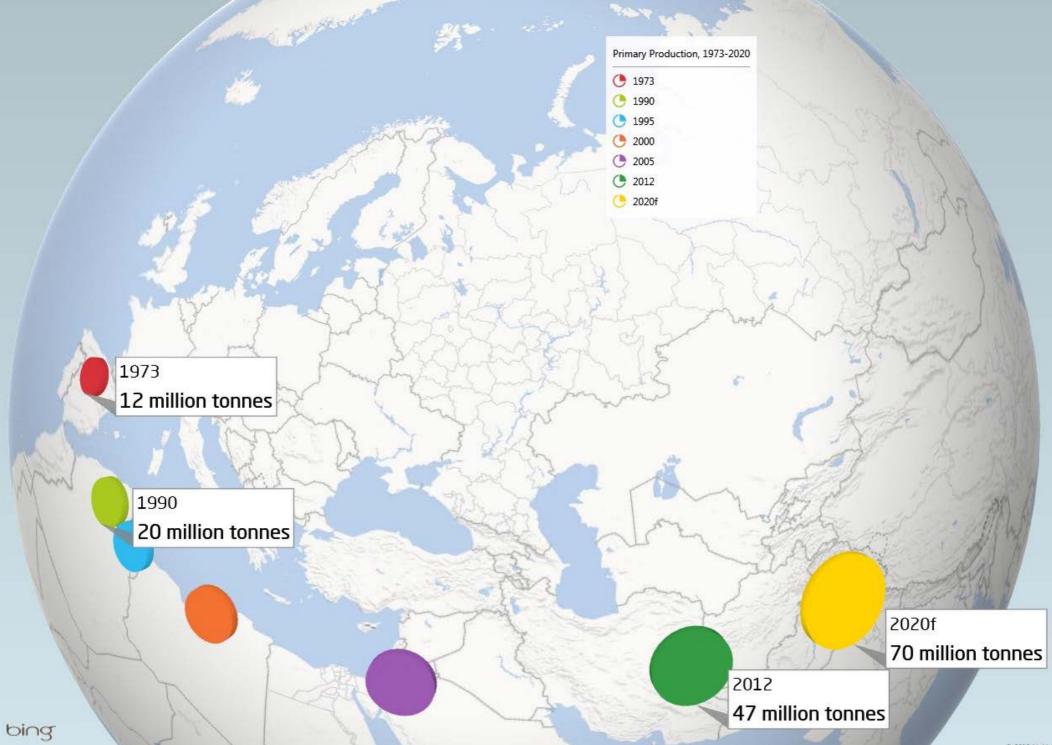


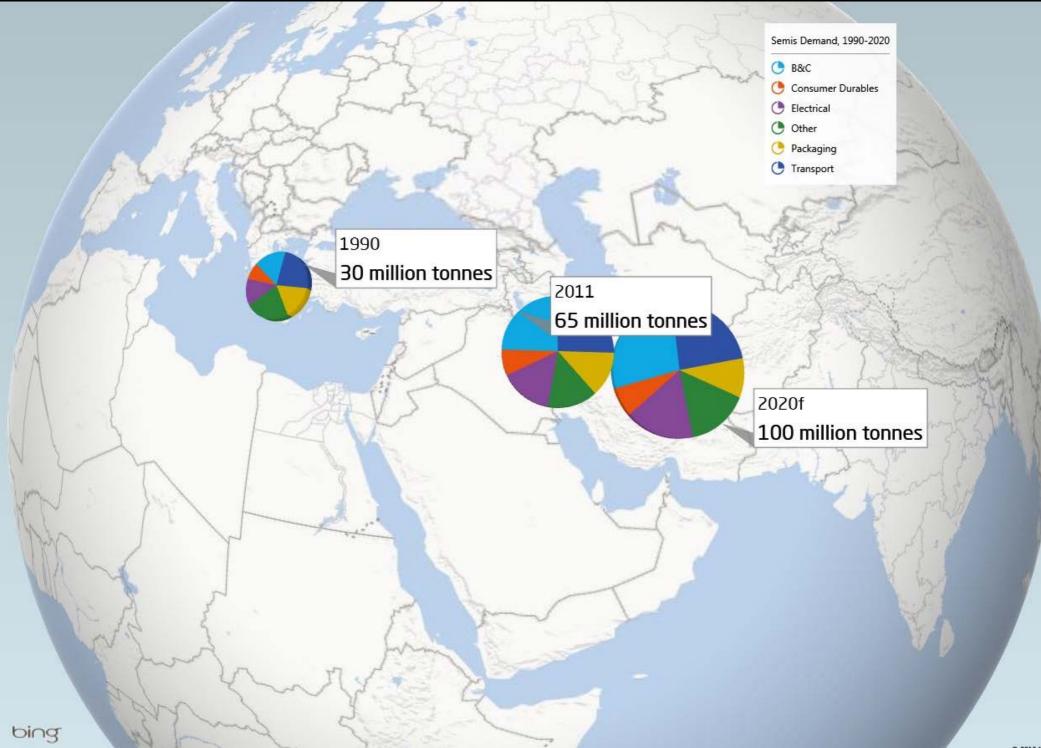
Global Industry Dialogue & Expert Review Workshop

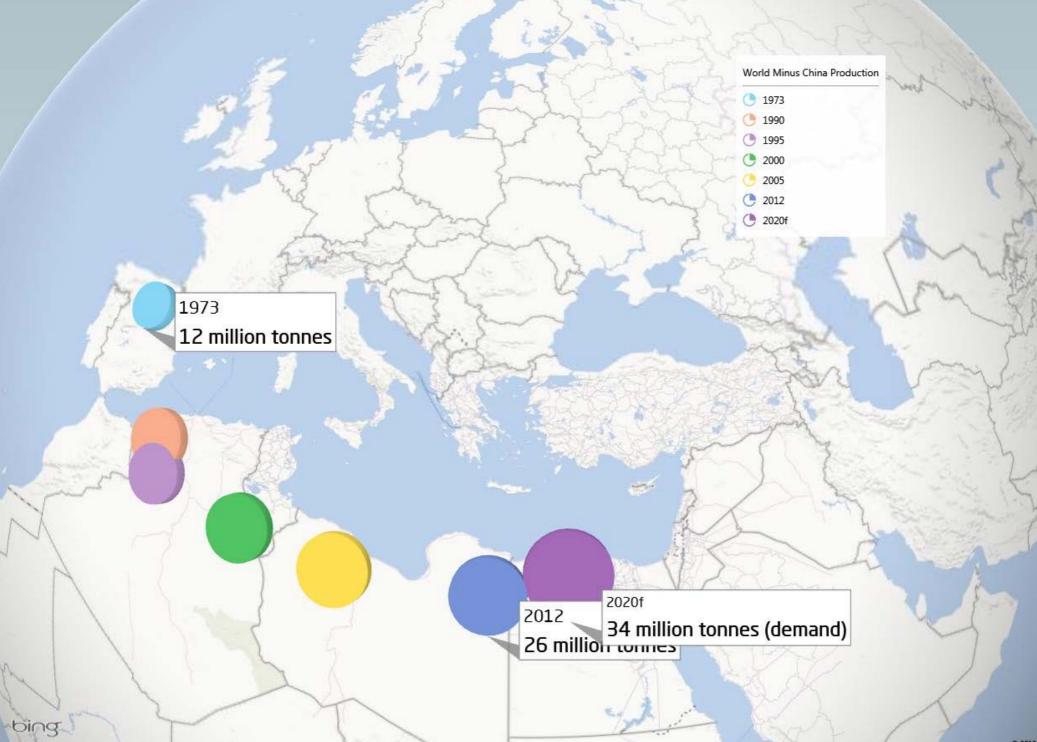

Aluminium Sector

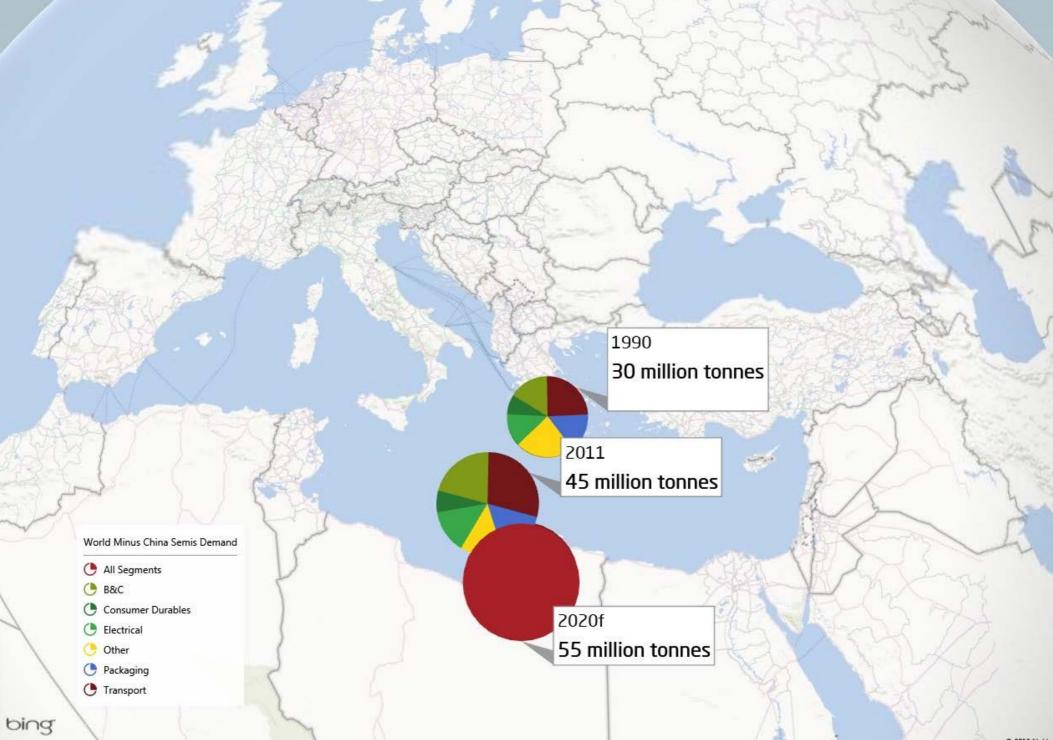


Primary Production 1990




Primary Production 2012


PRODUCTION & CONSUMPTION "CENTRES OF GRAVITY"



THE WORLD (MINUS CHINA)

data:narrative

- 1. Increase transparency and functionality
 - Empower users to tell their own story
 - Give free access to credible data
- 2. Tell The Aluminium Story
 - Narrative framework

http://www.world-aluminium.org/statistics/

Data	Frequency	Coverage	Group	Since	User filters	Output *
Primary Aluminium Production (tonnes Al)	Monthly	Global	Regional	1973	 Period Frequency (M/Q/A) Region 	 Map (snapshot in time, across space) Histogram (across space through time) Line graph (change over time per group) Data (inc option to download .csv)
Alumina Production (tonnes Al ₂ O ₃)	Monthly (quarterly pre- 2012)	Global	Regional	1974	PeriodFrequencyRegionAlumina grade	MapHistogramLine graphData
Primary Aluminium Capacity (tonnes Al)	Annual	Around 40-50%	Regional	1973	PeriodRegion	MapHistogramLine graphData
Alumina Capacity (tonnes Al ₂ O ₃)	Annual	Around 40-50%	Regional	1974	PeriodRegion	MapHistogramLine graphData
Primary Aluminium Smelting Energy Intensity (kWh/t Al)	Annual	Over 90%	Regional	1980	PeriodRegionAC/DC	MapLine graphData
Primary Aluminium Smelting Power Consumption (GWh)	Annual	Over 90%	Regional	1980	PeriodRegionPower mix/source	MapHistogramData
Metallurgical Alumina Refining Energy Intensity (MJ/t Al ₂ O ₃)	Annual	Over 90%	Regional	1985	PeriodRegion	MapLine graphData
Metallurgical Alumina Refining Fuel Consumption (TJ)	Annual	Over 90%	Regional	1985	PeriodRegion	MapHistogramData
Fluoride Emissions (kg F/t Al)	Annual since 2002	Global	Technology	1990	PeriodTechnology	MapHistogramLine graphData
Perfluorocarbon (PFC) Emissions (Gg CF_4 , Gg C_2F_6 , t CO_2e/t Al)	Annual since 1998	Global	Technology	1990	PeriodTechnologyReported/non-reported data	MapHistogramLine graphData

CURRENT IAI STATISTICS

- Primary Aluminium Production
- 💰 Alumina Production
- 🜒 Primary Aluminium Capacity
- 💰 Alumina Capacity
- Primary Aluminium Smelting Energy Intensity
- Primary Aluminium Smelting Power Consumption
- Metallurgical Alumina Refining Energy Intensity
- Metallurgical Alumina Refining Fuel Consumption
- 👔 Fluoride Emissions
- left Perflurocarbon (PFC) Emissions

RELATED WEBSITES

- 🛞 Antaike (China)
- Aluminum Association (US)
- 🛞 European Aluminium Association
- 🐼 Japan Aluminium Association

RELATED PUBLICATIONS

- Aluminium Inventories (1973-2013)
- 2011 Anode Effect Survey Report
- 2010 Sustainability Update
- Production Survey Forms
- Capacity Survey Forms
- Energy Survey Forms

PRIMARY ALUMINIUM PRODUCTION

Date of Issue: 27 Sep 2013

REGION FILTER: TIME PERIOD: frequency: -Africa South America Monthly Asia (ex China) ☑ West Europe from: 2013 August --East & Central Europe 🛛 China 🛛 Oceania to: August Ŧ 2013 -North America 🛛 ROW Estimated Unreported HISTOGRAM **VISUALISATION TYPE:** 🌒 MAP LINE GRAPH D ATA Total for Aug 2013: 4,212 thousand metric tonnes of aluminium East & Central North America Europe - 333 416 West Europe - 303 Asia (ex China) -201 China Reported -1,863 GCC - 333 China Estimated Unreported - 200 South America -163 Africa - 156 Oceania - 179 **ROW Estimated** Unreported - 65

NOTES

...the website of the International Aluminium Institute

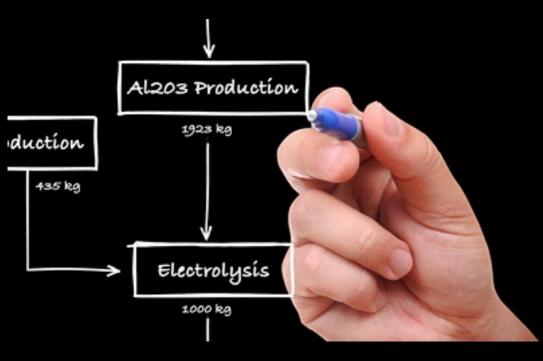
+ HOME + STATISTICS + NEWS + PUBLICATIONS + IMAGES + ABOUT + SITE MAP

FILTER

Search Publications

Publication Year 👻

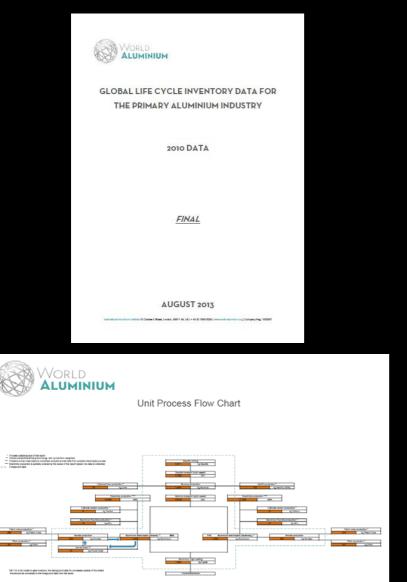
0


PUBLICATIONS

8	2010 Life Cycle Inventory for the Worldwide Primary Aluminium Industry (2013)	🛓 Download
8	2012 Anode Effect Survey Report (2013)	🛓 Download
8	Aluminium Recycling, OEA Congress, Duesseldorf, 25 - 26 February (2013)	🛓 Download
8	Alusil 21st International Recycling Conference and Exhibition, Moscow, 9 - 11 April (2013)	🛓 Download
0	A Review of the Global Aluminium Industry: 1972-2012 (2013)	🛓 Download
8	Bauxite Residue Management: Best Practice (2013)	🛓 Download
3	IAI Form 351 - Aluminium Inventories (1973-2013) (2013)	🛓 Download
	Improving human toxicity LCA for polycyclic aromatic hydrocarbons (PAHs) – Executive Summary (2013)	🛓 Download
	2011 Anode Effect Survey Report (2012)	🛓 Download
0	Aluminium Intensive Electric Vehicle Report (2012)	🛓 Download
0	Aluminium Recycling, MB Asian Recycled Aluminium Conference, Bangkok, 4 - 5 July (2012)	🛓 Download
0	Aluminium Recycling, MB Recycling Conference, Austria, 20 - 21 November (2012)	🛓 Download

Tag Cloud

alumina bauxite bauxite residue carbon footprint energy environment GHG green buildings health life cycle light weighting mining packaging PFC power generation recycling red mud rehabilitation safety statistics sustainability transport 中文 绿色建筑


Life Cycle Data

Summary (per tonne of aluminium ingot)

http://www.world-aluminium.org/publications/

Tonnes of prebake anode periton Tonnes of Soderberg pasts periton	Tonnes of probake anode peritonne of aluminium Tonnes of Saderberg pasts peritonne of aluminium		E	Prebaika Al producti Søderberg Al Producti	on: on:	36,773,145 4,375,595	8	Percentage Spi Percentage Spi	E 09% E 11%	3	
				Alumina production		Anode/Pasts production Anode/Pasts		Electrolysis Uquid Metal	Casting		Total
	e Flow (Material e Flow (Tonnes)	Seccile 5.571		Alumina 1,934		Anode/Paste 0.439		Liquid Metal	Ingot		1 tingst
Transport			┓		П					Н	
Average sea transport Average road transport				11,440				13,423			24,871
Average rail transport	Smit Al Ingot			108				87			195
Material Input											
Describe	kgit Al Inget			5,571.47							5,571.47
Caustic acts Calcined lime	kat Al Inget kat Al Inget			151.94							151.94
	m ² t Al legat	2.77		4.90		0.67		3.09	3.49		15.00
Sea water	m ² t Al inget	3.09		1.00				6.25			11.02
Petrol coke Pitch	kgit Al Ingot					295.19 73.59					295.19 73.59
Refractory material	kat Al Inget kat Al Inget					2.00		7.56			10.36
Sitesi Alumina (dry)	kgit Al Ingot kgit Al Ingot					2.36		3.95			6.31 1,934.14
Anodes (net)/Soderberg Paste	kg/t Al Ingot							439.00			439.00
Cathode carbon Aluminium fluoride	kgit Al Ingot							6.02			6.02
Electrolysis metal	kat Al Inget kat Al Inget							19.17	1,000.00		1,000.00
	kgit Al Ingot								19.57		19.57
Chiefme	kgit Al Ingot								0.036		0.006
Energy Input											
Heavy of Deepling	kat Al Inget kat Al Inget	0.95		100.40		12.45			2.68		176.55
Natural gas	m ² t Al ingst			200.10		19.24			20.02		307.44
Coal	kgit Al Ingot KWhit Al Ingot	5.11		142.01		50.20		15,274.63	0.96		143.57 15,549.70
	STATE OF LEGAL	0.11		106.40		00.20		10,279,00	67.00		10,048.70
Air emissions Particulates	had dilanat	0.94		1.07		0.006		2.55	0.037		4.70
of which < 2.5microne	kgit Al Ingot kgit Al Ingot	0.94		0.043		0.078		2.34	uttar		2.45
Carbon dioxide from non-fuel combustion sources Suffur dioxide	kgit Al Inget kgit Al Inget			4.73		89.95 1.71		1,537.79	0.11		1,627.74 21.46
Ntrous oxides (as NO ₂)	kgit Al Ingot			1.32		0.30		0.25	0.072		1.95
Mercury Particulate fluoride (as F)	of Al Inpot			0.47							0.47
	kg/t Al Ingot					0.00005		0.55			0.55
Gaseous fuoride (as F) Total polycyclic aromatic hydrocarbone	kgit Al Ingot kgit Al Ingot					0.0029		0.054			0.58
Derzojajpyrene	of Al Inpot					0.004		0.74			0.82
Tetratuoromethane Hexafuoroethane	kgit Al Ingot kgit Al Ingot							0.056			0.06
Hydrogen chloride	kgit Al Inget kgit Al Inget								0.024		0.024
Diosin/furane	kgit Al Ingot								1.325-09		1.325-09
Water emissions											
Freeh weter	m ¹ it Al Inget	0.29		2.62		0.63		3.65	3.26		10.45
Sea water Suspended solids	m ² it Al Inget kgit Al Inget	3.69		1.06		0.013		5.81	0.14		10.58
OI and grease/total hydrocarbons	kpit Al Ingot			1.50		0.0000		0.0050	0.037		1.54
Mercury Fluoride (ss F)	git Al Inget kgit Al Inget			0.00013		0.0034		0.000			0.00013
Polycyclic aromatic hydrocarbona (6 Bornelf componenta)	git Al Inget					0.011		0.26			0.20
Dy-Products (for external recycling)									1		
Detailte realidue	kgit Al Ingot			4.39					1		4.39
Spent pot lining carbon Spent pot lining refractory	kgit Al Ingot kgit Al Ingot							9.52			9.52 7.30
Refrectory	kgit Al Ingot					1.03		2.51	0.73		5.07
Sitesi Doos	kgit Al Ingot kgit Al Ingot					2.98		6.63	15.00		9.01 15.00
Filter dust	kgit Al Ingot kgit Al Ingot								1.49		1.49
Screp sold									4.41		4.41
Other	kgit Al Ingot			10.83		3.05			1		14.68
Solid waste (for landfilling)	had been										
Mine solid waste Dauste residues (red mud)	kgit Al Ingot kgit Al Ingot	0.34		2,010.29					1		2,610.29
Spent pot lining	kg/t Al Ingot							7.65			7.65
Weste alumina Waste carbon or mb:	kgit Al Inget kgit Al Inget					6.93		4.25	1		4.25
Scrubber sludges	kp/t Al Inpot					0.13		6.31			6.44
Reflectory (excl. spent pot lining) Dross	kgit Al Ingot kgit Al Ingot					1.75		1.23	0.47 5.27		3.44
Filter dust	kg/t Al Ingot								0.46		0.46
Other solid industrial waste of which landfill waste	kgit Al Ingot kgit Al Ingot			33.90		1.67			0.56		36.22
of which hazardous waste	kgit Al Ingot			17.99		1.13					19.12
Calculated air emissions from fuel combustion Methane from fuels	kgt Al Inget	0.00031	Т	0.065		0.0024	Т		0.0014		0.009
Nitrous oxide from fuels	kot Al Inget	0.000001		0.010		0.00041			0.00020		0.011
Carbon dixide from fuels	soft All Inpot	7.71	_	1,345.35		01.00			54.03		1,488.20

Life Cycle Inventory Critical Review

"The life cycle inventory data of global primary aluminium production in 2010 are consistent, transparent, and of high quality. It provides the LCA practitioner with reliable life cycle inventory data of global primary aluminium. The lack of information about the Chinese primary aluminium production is addressed as good as possible.

The publication of unit process data allows for a consistent implementation of the data into LCA databases worldwide. The data are thus suitable for LCA studies compliant with ISO 14040 and ISO 14044 (ISO 2006a & b) and for implementation in LCI databases which are in line with the UNEP SETAC Global Guidance Principles for Life Cycle Assessment Databases.

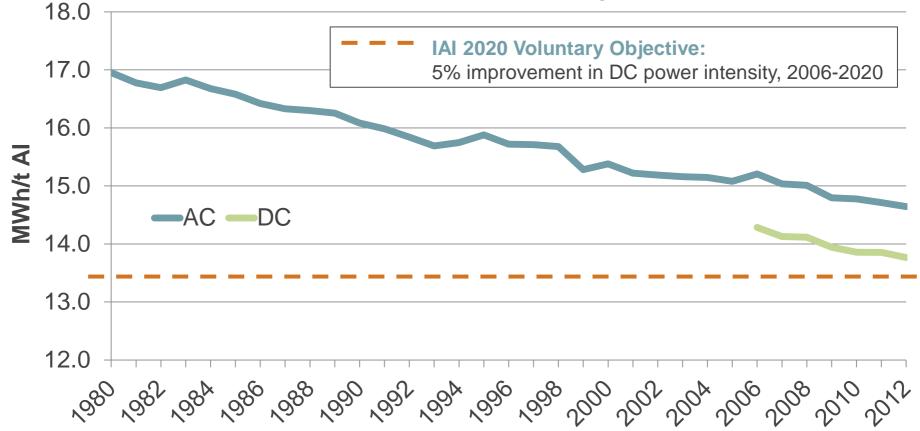
For future updates it is recommended to include Chinese production in the survey, extending the inventory to cover land use and transformation and heavy metals leaching from red mud dumps, and regionalising the water use data."

Life Cycle Databases

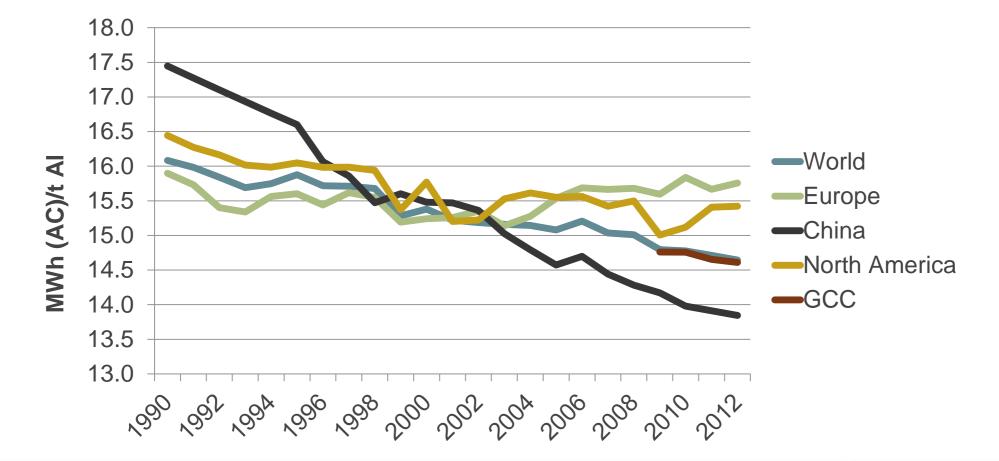
U.S. Life Cycle Inventory Database

Regional Resources (downstream data)

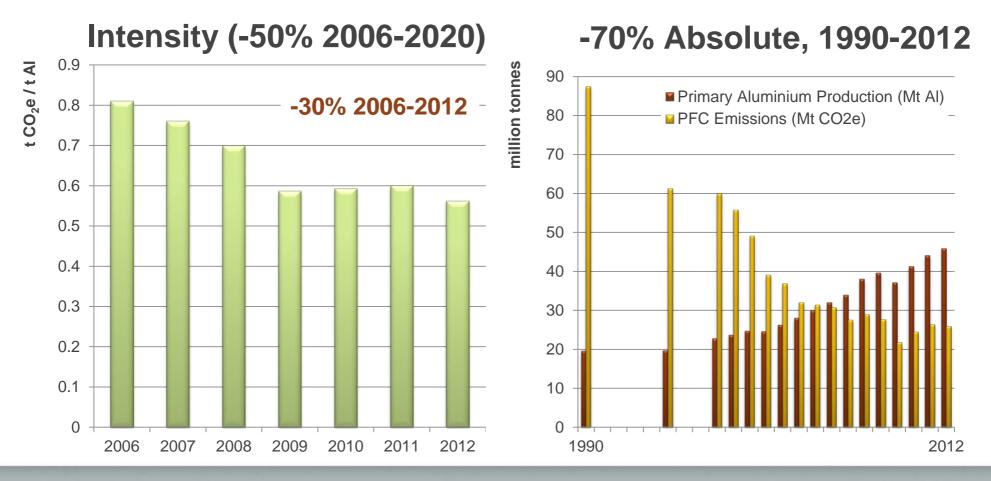
- EAA Environmental Profile Report (2012):
 - http://www.alueurope.eu/
- Aluminum Association LCA for North America (forthcoming)
- Both data incorporated into GaBi.



Global Aluminium Industry Energy Use 5,000,000 TJ (2013)

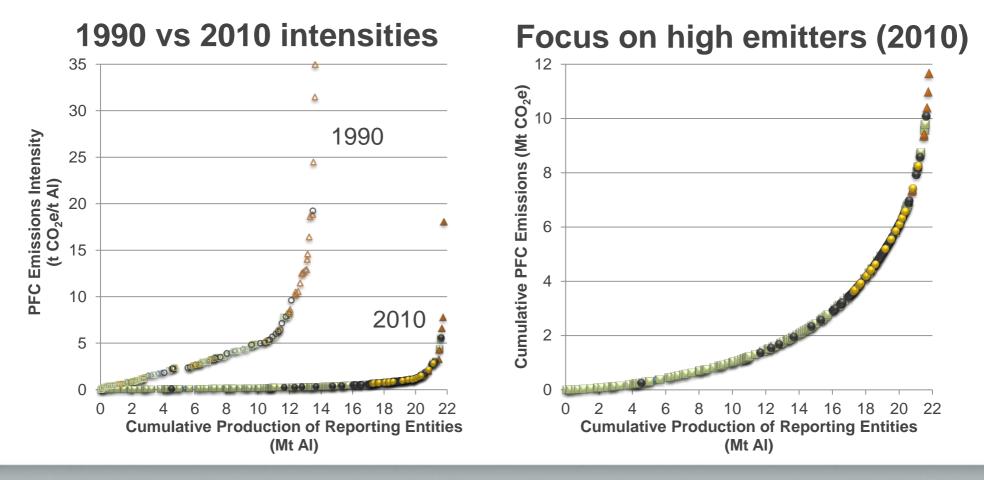


Electrolysis Energy Intensity Reduced by 15% over last 30 years



Regional Averages, 1990-2010

World Aluminium


PFC Emissions

www.world-aluminium.org

PFC Emissions Benchmarking

NARRATIVE

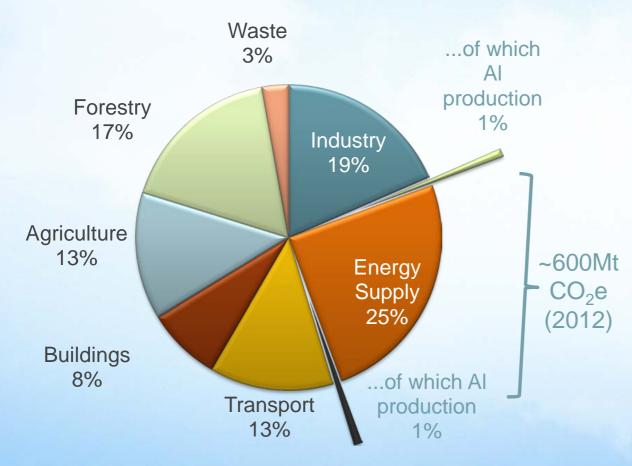
Dismantling & contraction of integrated value chain

Increasing demand from customers for responsibly sourced" aluminium

The aluminium industry must demonstrate...

- 1. that it produces responsibly, by mitigating environmental impacts and positively impacting the communities in which it operates;
- that its products bring a net benefit to society in terms of reduced environmental impact; improved quality of life, health, safety & wellness and economic growth;
- 3. that at the end of product life, the value of the metal, the energy that went into its production and the resource inputs are retained and realised as another product or service, through collection and recycling or energy recovery.

THE ALUMINIUM STORY[™]



ENERGY BANK FOR THE FUTURE

www.thealuminiumstory.com

Anthropogenic GHG Emissions by Sector

ENERGY BANK FOR THE FUTURE

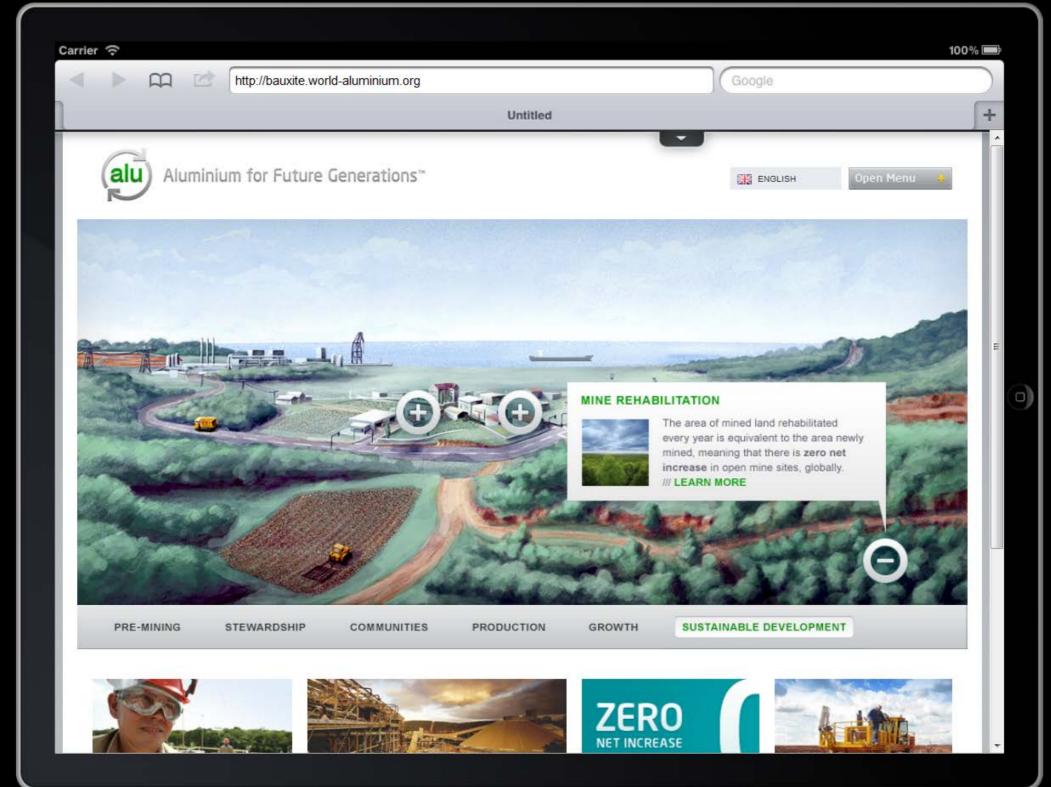
Opportunities to reduce emissions through use of aluminium in:

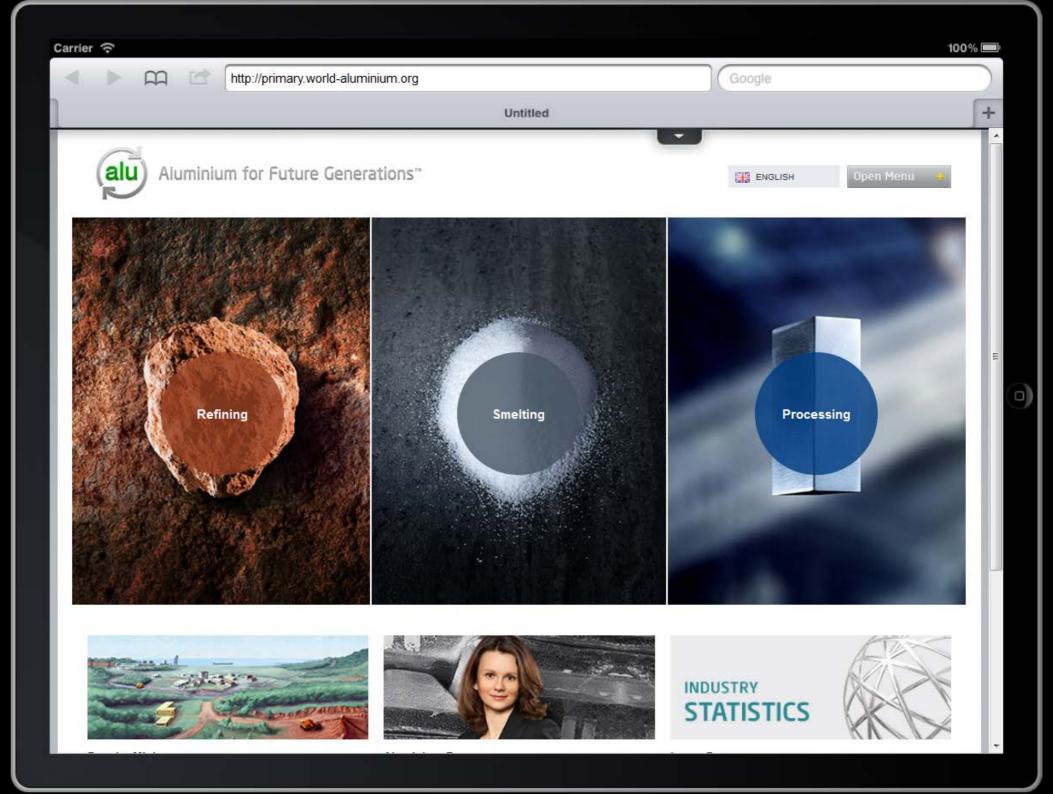
- Green buildings;
- Lightweight vehicles;
- Protective Packaging;
- Efficient machinery;
- Cables;
- Turbines & Solar Panels;
- Efficient Consumer Durables;
- Intelligent Control Systems.

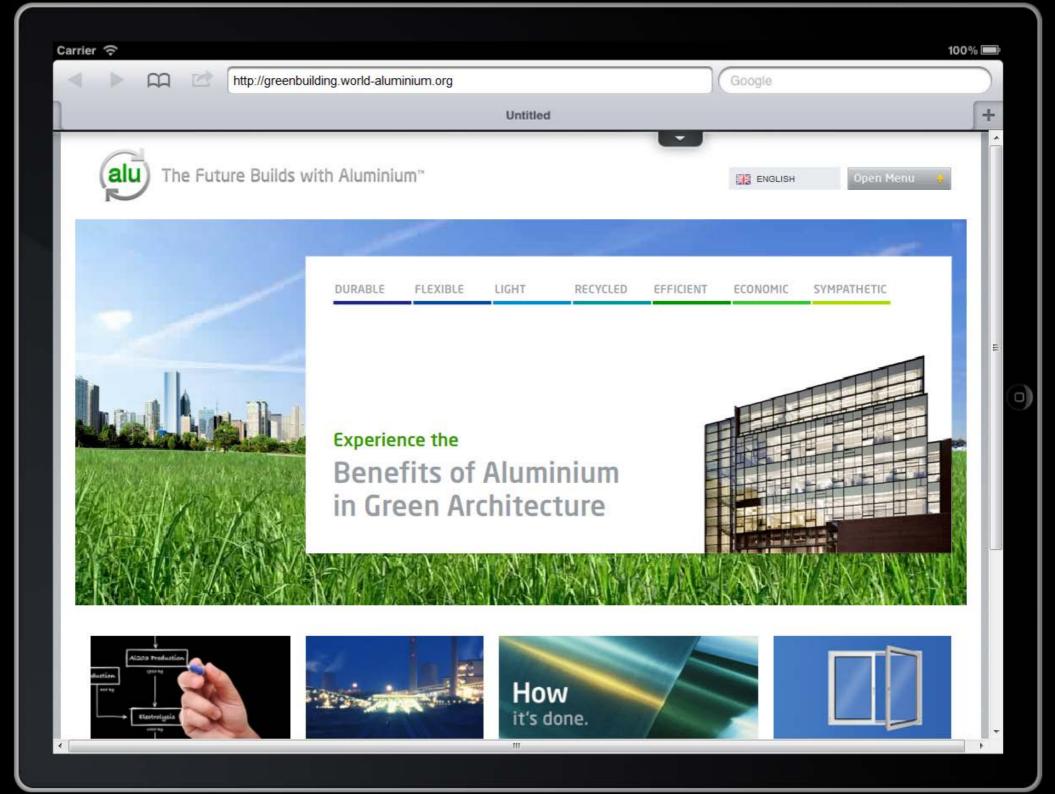
- Mining & refining best practice
 Production processes
- Transport application benefits
- Green building application benefits
- Packaging benefits
- Recycling & value recovery

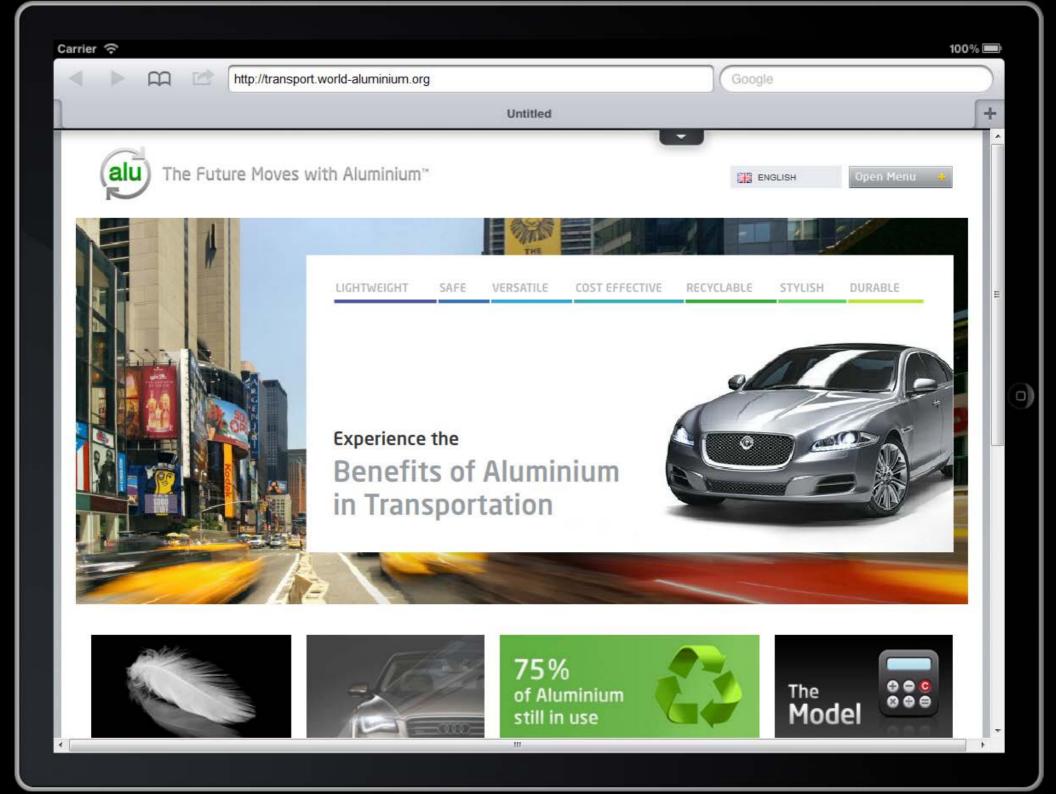
The Aluminium Story

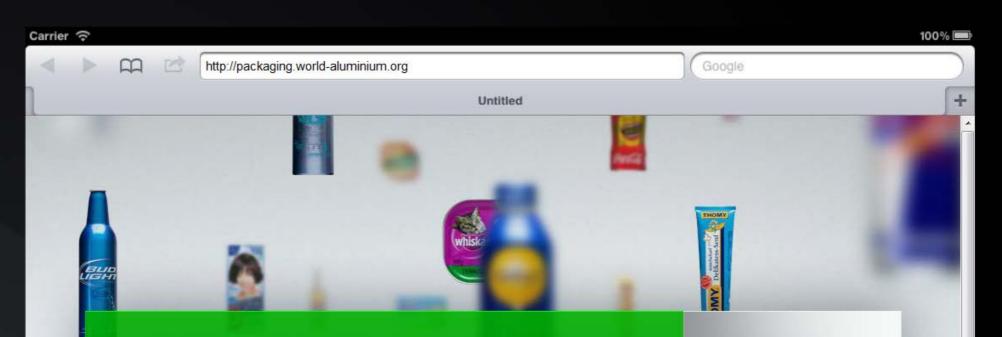
From Mine to Market










CN EN

FRESHNESS & FLEXIBILITY

30% of the food in developing countries perishes due to the lack of packaging. Aluminium has the best barrier properties to keep food and drink, pharmaceuticals and toiletries fresh and safe, guaranteeing longer shelf-life and contributing to the sustainability of packaged products. SHOW PRODUCT SHELF

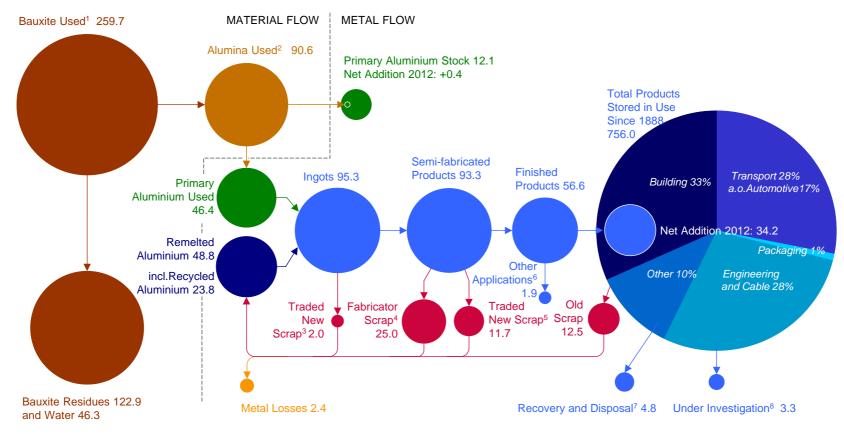
Carrier	()						100)% 📟	
4	►	2	\square_{i}^{p}	http://recycling.world-aluminium.org	Google				
1					Untitled			+	
	ali		uminiı	Im for Future Generations™		ENGLISH	Open Menu 🔺	ŕ	

RECYCLING TRANSFORMS PRODUCTS & SOCIETIES

The recycling of aluminium products ensures that this valuable metal can change its use over and over again, while retaining its unique qualities. Thus, what was once a drinks can could one day form part of an aircraft, a laptop computer or even another can.

• <u>www.thealuminiumstory.com</u>

• <u>www.world-aluminium.org</u>


• <a>www.youtube.com/thealuminiumstory

MASS FLOW

Global Mass Flow 2012 (DRAFT)

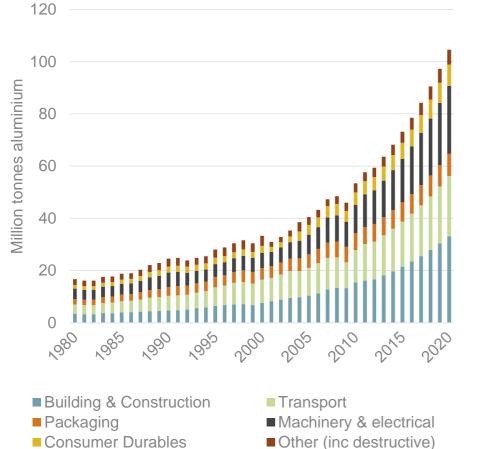
Values in millions of metric tonnes. Values might not add up due to rounding.

1 Calculated based on "2010 Life Cycle Inventory Data for the Worldwide Primary Aluminium Industry (2013)". Includes, depending on the ore, between 30% and 50% alumina; 2Calculated based on "2010 Life Cycle Inventory Data for the Worldwide Primary Aluminium Industry (2013)". Includes, on a global average 52% aluminium; 3 Aluminium in skimmings; 4 Scrap generated by foundries, rolling mills and extruders. Most is internal scrap and not taken into account in statistics; 5 Scrap generated during the production of finished products from semis; 6 Such as deoxidation aluminium (metal property is lost); 7 Either incinerated with/without energy recovery, material recovery or disposal; 8 Area of current research to identify final aluminium destination (reuse, recycling, recovery or disposal).

Three quarters of all aluminium ever produced is still in productive use

- 1 billion tonnes primary produced since 1888
- 750 million tonnes in products in use

• A positive recycling story but...

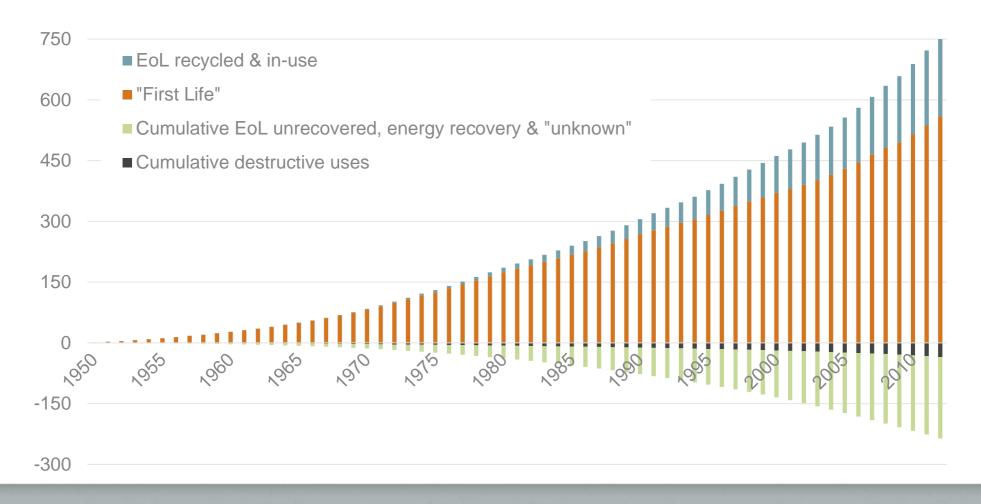


...more significantly a story of

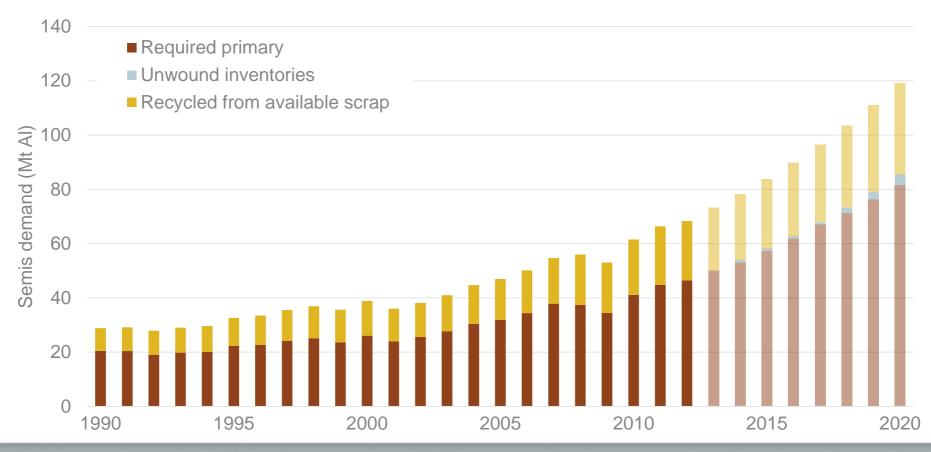
- Demand growth
 - For light, strong, conductive, protective products
 - 800 million tonnes produced since 1980
- Durability
 - Aluminium in long lifetime products have not yet reached the end of their "First Life"
 - Long lifetime products tend to have high recycling rates (>90%)

World Aluminium

Apparent Consumption (fabricated products)



Aluminium "in use"



75% still in use; 60% still in "first use"

Demand will continue to be met from both primary & recycled sources

Mass Flow Ongoing

- Regionalisation of all flows (inc. trade, use and EoL);
- Stocks "not in use", e.g. inventories;
- Lifetime distributions & regional specifics (e.g. buildings in China are not like buildings in EU);
- GHG & Energy modules;
- User-defined variables and scenarios:
 - Model architecture rather than "bundled data"

THE ALUMINIUM STORY[™]

ENERGY BANK FOR THE FUTURE

www.thealuminiumstory.com