Charting a transition for the Chemical Industry

IEA / ICCA / DECHHEMA

Webinar launch, 17 June 2013

Technology Roadmap

Energy and GHG Reductions in the Chemical Industry via Catalytic Processes
Key technologies for reducing global CO₂ emissions

- **6°C Scenario** – emissions 58 Gt

- **2°C Scenario** – emissions 16 Gt

Source: Energy Technology Perspectives 2012

- **6°C Scenario** – business-as-usual; no adoption of new energy and climate policies
- **2°C Scenario** - energy-related CO₂-emissions halved by 2050 through CO₂-price and strong policies

Energy technology roadmaps
Technology roadmaps status

2009

2010

2011

2012

2013

• Building envelopes
• Energy Storage
• Hydrogen

Low-carbon energy technology roadmaps
Overview of IEA roadmap process

- Engage cross-section of stakeholders
- Identify a baseline:
 - Where is technology today?
- Establish a vision:
 - What is the deployment path needed to achieve 2050 goals?
- Identify technical, regulatory, policy, financial, public acceptance barriers
 - What are the near term action items?
- Develop implementation action items for stakeholders
Global industrial energy consumption by sector

Note: Includes feedstocks and energy use in coke ovens and blast furnaces
Source: IEA
Technical energy savings potential in the chemical industry

Note: Energy savings potential based on 2010 production levels.
Source: IEA.
CO₂ emissions reduction of 1.6 to 1.8 Gt CO₂ possible through a combination of energy efficiency, energy recovery, fuel switching and CCS
Chemical Roadmap Messages

• Catalysis and related improvements could reduce energy intensity 20% to 40% by 2050. Saving 13 EJ and 1 Gt of CO$_2$-eq in 2050

• To 2025 incremental improvements and deploying BPTs could provide substantial energy and emissions savings

• Deeper energy & emissions cuts will require development and deployment of emerging technologies that exceed current BPTs

• “Game changer” technologies, such as sustainable biomass feedstocks and low carbon hydrogen, are needed for deeper emissions reduction (additional 0.5 Gt CO$_2$-eq)
GHG emissions avoidance potential in the chemical industry via catalysis
GHG emissions avoidance potential in the chemical industry via catalysis
GHG emissions avoidance potential in the chemical industry via catalysis
GHG emissions avoidance potential in the chemical industry via catalysis
Evolution of energy intensity in the chemical industry via catalysis

Note: Energy consumption for olefins in this figure is based on deployment of catalytic cracking process. Source: DEchema.
Energy savings potential in the chemical industry via catalysis

![Graph showing energy savings potential in the chemical industry via catalysis.](image)

- Incremental improvement
- BPT conservative
- BPT optimistic
- Emerging technologies
- Biomass
- Hydrogen

Note: Black line represents zero axis.
Source: DEHEMA.
Total energy consumption in the chemical industry

Reason for increased energy consumption:
Chemical production is expected to increase by factor of 2-3
Regional savings potential

Largest potential in China: by 2050 5.3 EJ (40%) of the 13.2 EJ potential energy savings.
Policy recommendations

• **Enable framework** for improved research & development effectiveness

• **Secure** financing, including cost effective incentives

• **Promote** international collaboration, sharing of information, best practices and R&D

• **Integrate** legislation for more coherent policies

• **Encourage** collaboration – public/ private partnerships
Key actions in the next 10 years

Policymakers

• Develop policies that more highly reward energy efficiency investments.

• Create long term policy that reinvigorates catalyst/process improvement for high-energy-consuming processes.

• Enable policies for best practices where new facilities are built.

• Eliminate barriers to the use of more energy efficient technology
Key actions in the next 10 years

Chemical industry

- Identify top opportunities to accelerate R&D and investments.
- Facilitate R&D on game changers to lower barriers and costs.
- Promote cooperation on reducing energy and emissions.

Academia and research organisations

- Stimulate research on large-volume/high-energy use processes.
- Collaborate to identify top prospects & reduce technical barriers.

Financial institutions

- Work to better understand funding requirements and opportunities for lower carbon chemical sector transition.
Global Chemical Industry Plans

• ICCA acts as voice of global chemical industry leveraging multiple national association

• Chemicals represent largest industrial energy user but even larger solution provider in terms of energy and GHG savings

• Roadmap helps to address the dual challenge of improving our own operations while continuing work on energy and GHG savings technologies in our value chains
Next Steps and Regional Aspects

• Large variations in regional efficiency potential
 – Age of plants & growth outlook of local market
 – Feedstock and technology choices for new investments

NEEDS policy approaches tailored to each region’s challenges

• Roadmap is first step in providing information that encourages better future investment choices
 – Multiple launches and workshops planned regionally to make this a locally driven continuous improvement process
DOWNLOAD THE ROADMAP AND ANNEXES AT:

http://www.iea.org/publications/freepublications/publication/name,36970,en.html

www.dechema.de/industrialcatalysis

FOR ADDITIONAL INFORMATION CONTACT:

IEA - TechnologyRoadmapsContact@iea.org

ICCA – info@icca-chem.org

DECHEMA - info@dechema.de
Questions?