

European Automobile Manufacturers Association

COMMERCIAL VEHICLES, FUEL EFFICIENCY AND CO₂

Challenges & Possible solutions

IEA Freight Truck Fuel Economy Workshop Challenge Bibendum, 20-21 May 2011, Berlin

> **Stefan Larsson** Director Regulatory Projects

ACEA Position

Fuel Efficiency is Market Driven

- Fuel efficiency is one of the most important competitive factors in developing and selling trucks and buses. Therefore, market forces ensure continuous progress in fuel economy and CO₂ emission reduction in the most efficient way.
- Our "Vision 2020" expects a 20% improvement of fuel efficiency by 2020 (compared to 2005) due to these market forces.
- Any product-oriented legal requirement regarding fuel efficiency and CO₂ emissions should aim to further strengthen these market forces.

Challenges with a regulatory approach

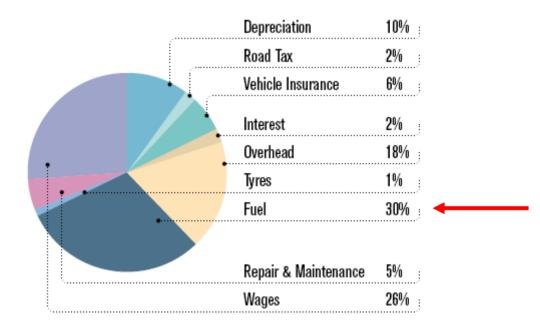
- Using the right metric for fuel efficiency
- Satisfying customers expectations on fuel efficiency
- The huge variety of complete heavy-duty vehicles
- Heavy-duty vehicles are often custom-built in several stages involving different manufacturers
- The high number of unique and different usage patterns
- Using test cycles that reflects actual vehicle usage
- The traditional use of the combustion engine is changing when operating in hybrid vehicles

Using the right metric for fuel efficiency

- "liter/100 km" is <u>not</u> a good fuel efficiency metric for commercial vehicles as it requires same duty cycles and vehicles with similar specifications
- Metric based upon "Fuel Used/Work Done" is more relevant
- "Work" with respect for transport of goods can be specified in "tonne-km" which focuses on the weight but as loading volume is becoming more important "cubic meter-km" is an option and for transport of people "passenger-km"

GCW/GVW ton		Loading Capacity ton	Distance km	tonnekm	l/1000tonkm at 100% utilisation	CO2* g/tonkm at 100% utilisation
URB	N DISTRIBUTION					
3.5	l,≡l _{el}	1.5	100	150	80.0	210
7.5	F a	4	100	400	35.0	92
12	.	7.2	100	720	23.6	62
18		11	100	1100	18.2	48
LONG	DISTANCE					
26		17	100	1700	13.5	36
40		25	100	2500	12.0	32
60		40	100	4000	10.0	26

*using the factor 2.63 to convert 1 litre diesel to kg CO2


SOURCE VOLVO

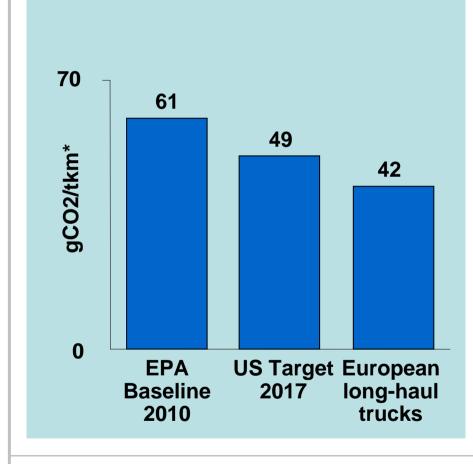
Satisfying customers expectations

European goods transports on roads are characterized by:

- High fuel prices
- High weights and volumes
- Relatively long distances

Fuel efficiency has therefore since long been a 1st priority because of its major impact on the Total Operating Costs

40-tonne Tractor – Semitrailer Combination

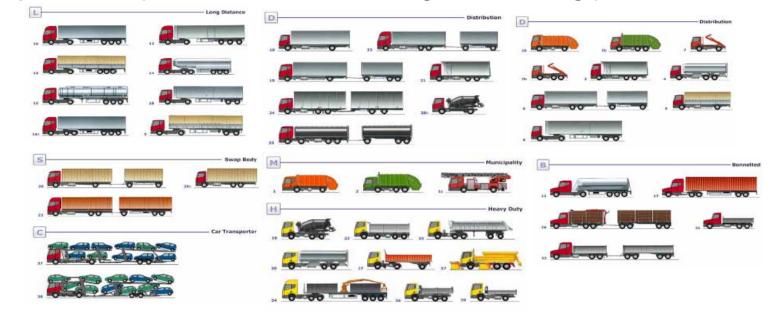

Fuel consumption is a customer priority

West	Easte		
Rank	Criteria	Category	Rank
1	Reliability	Vehicle	1
2	Service quality	Service	2
3	Fuel consumption	Vehicle	3
4	Spare part availability	Service	4
5	Manufacturing quality	Vehicle	5
6	Safety	Vehicle	6
7	Mileage cost	Price & costs	7
8	Purchase price	Price & costs	8
9	TCO ²	Price & costs	9
10	Down-times	Service	10

Eastern European Customers							
Rank	Criteria	Category					
1	Reliability	Vehicle					
2	Fuel consumption Vehicle						
3	Purchase price	Price & costs					
4	Service quality	Service					
5	Manufacturing quality	Vehicle					
6	Warranty and goodwill	Service					
7	Spare part availability	Service					
8	Mileage cost	Price & costs					
9	TCO ²	Price & costs					
10	Down-times	Service					

Challenges

Fuel efficiency - European versus U.S. HDVs


- U.S. EPA has published performance requirements for Heavy-Duty vehicles.
- Current European long-haul trucks have already better fuel efficiency** than the US 2017 target for long-haul Class 8 vehicles.
- Compared to EPA 2010 baseline current European long-haul trucks show about a 30% better efficiency**.

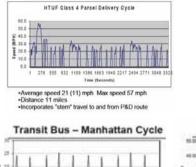
*at 75% utilisation of loading capacity

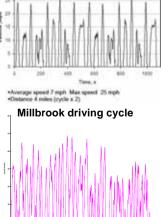
** Recognising that difference in vehicle specification of long haul trucks is to the European advantage - 4x2 in Europe versus 6x4 in US and the location of the fifth wheel in US which results in a larger gap between cab and trailer

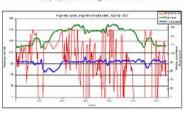
Huge variety of complete heavy-duty vehicles

• Trucks and buses are often custom-built in several stages and adjusted to specific needs concerning load, driving patterns ...

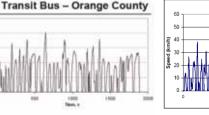
- As there is an **enormous variety of different vehicle designs** and resulting payloads that have significant impact on CO₂ generation there are few uniform high-volume vehicle categories.
- This means that CO₂ emissions of trucks and buses cannot be addressed or influenced via one-size-fits-all policies.


High number of unique & different duty cycles

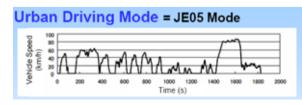

Duty-cycle for driving on motorway

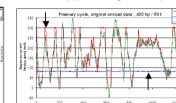

Due to the importance of fuel efficiency, the performance of complete HD vehicles are evaluated as close as possible to their actual usage.

Local Delivery – Class 4 (Neighborhood)

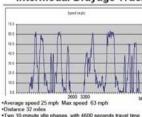

Duty-cycle for driving on rural roads

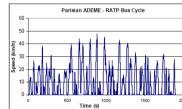
Local Delivery – Class 6 (Business)





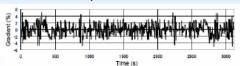
Average speed 20 (10) mph Max speed 57 mph
Distance 11 miles
Incorporates "stem" travel to and from P&D route

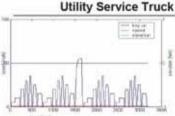



Average speed 12 mph. Max speed 41 mph
Ostance 6.5 miles

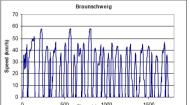
Intermodal Drayage Truck

0 500 Time (s) 1000


ed 35 (11) mph. Max


privates appropriated "siters" based to and from

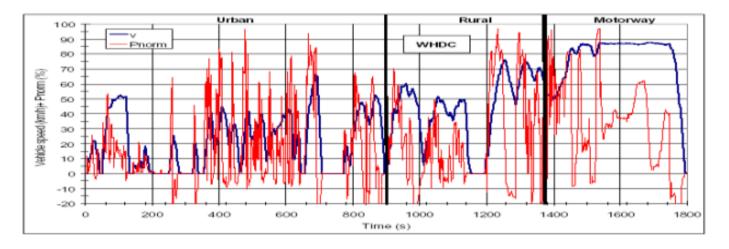
stance & miles

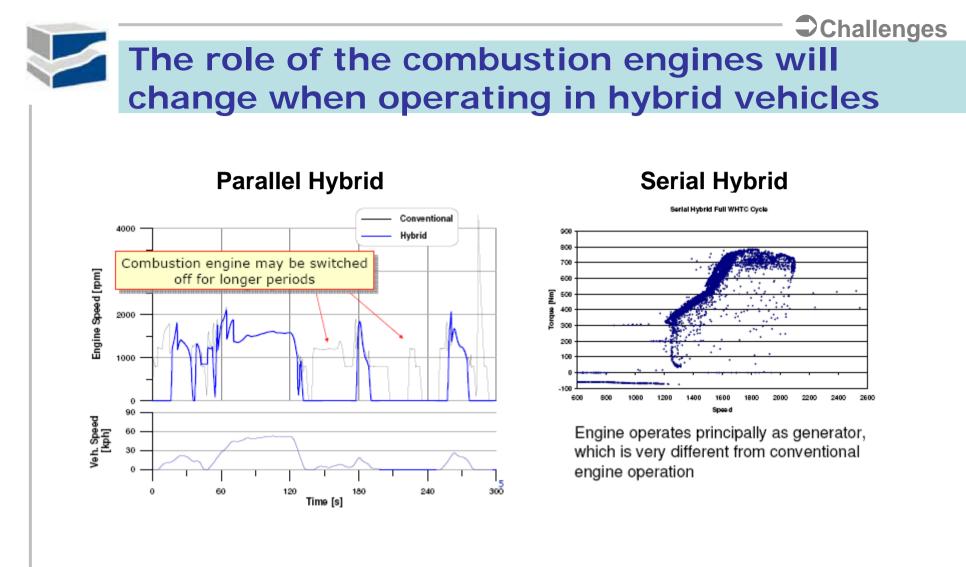

Neighborhood Refuse Truck

Interurban Driving Mode = 80km/h Constant Speed Mode with Road Gradient

•Average speed 14 mph Max speed 55 mph •Distance 12 miles

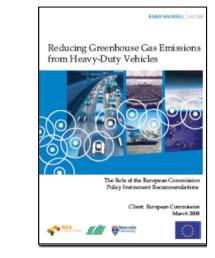
Dutch Urban Bus Driving Cycle


9



The World Transient Vehicle Cycle (WTVC) The basis for evaluating air quality emissions from heavy-duty engines

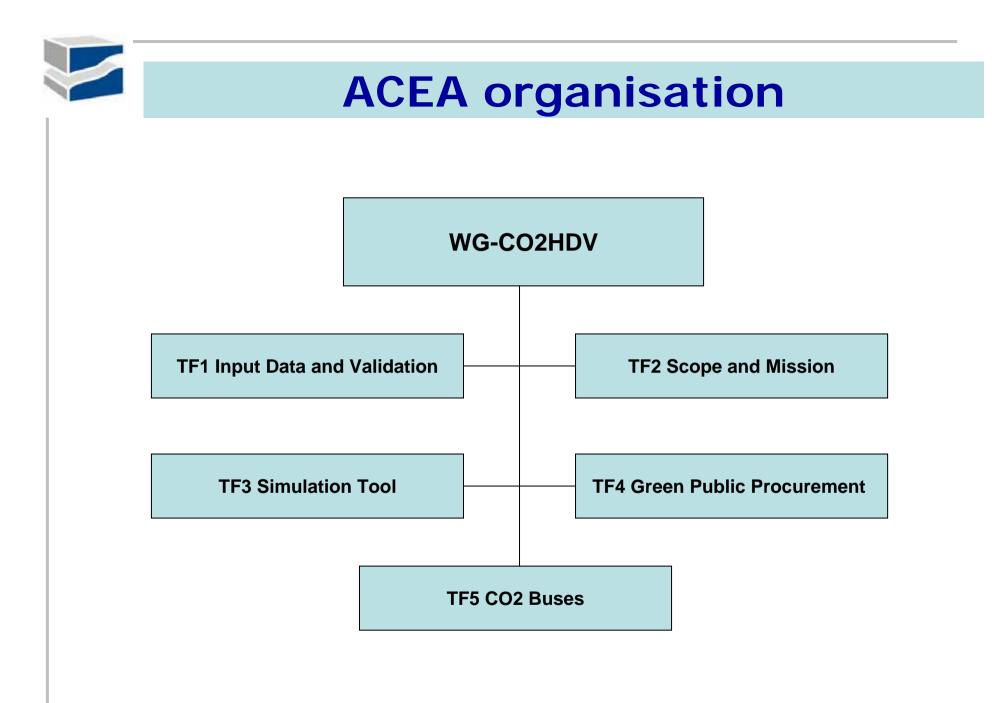
The WTVC **is not an appropriate cycle for** specific vehicle configuration and mission deviating from the **average** one, therefore not recommended in a simulation to evaluate the fuel efficiency of complete vehicles in specific missions.


This is the reason behind the OICA initiative to develop a certification procedure for **HD powertrains of HEVs with respect to NOx and PM**, based upon the Japanese HILS approach, as an annex to the existing WHDC GTR n°4 under the UN/ECE 1998 agreement.

DG Environment study - March 2008

Recommendations

- European HDV Operational Efficiency Programme
- HDV Energy Efficiency Labelling Policy Instrument
 - 1. Step 1: Labelling of the CO2 emissions from HDV engines as recorded by a standardised test procedure;
 - 2. Step 2: Labelling of entire vehicles predicting the overall efficiency of a whole vehicle combination in operation.
 - 3. Step 3: Labelling of vehicle components (such as superstructures, trailers and semi-trailers).
- Labelling of the fuel efficiency of tyres
- Revision of the Weights and Dimensions
- Market-Based Instruments

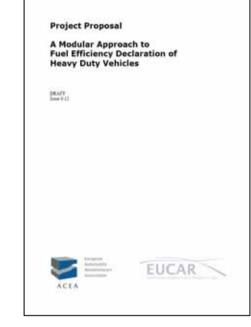


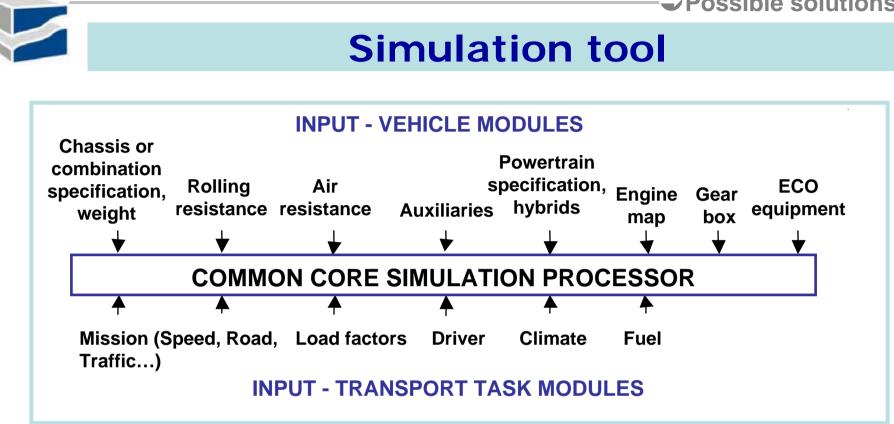
ACEA Position

To satisfy a "labelling" (B2B) requirement ACEA promotes:

- The development of a method to calculate the fuel efficiency of complete heavy-duty vehicles according to the "work done" principle (g/tonkm, g/m3km or g/pass.km).
- Using **computer simulation**:
 - allows a large number of vehicle types to be efficiently evaluated in many different transport missions.
- Using a **common** simulation tool:
 - with agree assumptions and specific input data generated by agreed methods enables HDV manufacturers to provide the customers with a certified declaration of fuel efficiency for their different product offerings.

A "Certified declaration of fuel efficiency" is the appropriate way to provide purchase guidance to professional customers


ACEA/EUCAR Project proposal


ACEA and EUCAR developed a project proposal on a methodology to calculate fuel efficiency of HD Vehicles using computer simulation

The project should:

- Matching vehicle classes with missions and duty cycles.
- Develop a tool for calculating fuel efficiency and CO₂ generation of heavy-duty goods vehicles, buses and coaches

- Input modules could be standardised, generic, or specific.
- With standardised interfaces to the core processor, input modules could be developed and improved over time
- Transparent declaration of inputs and results
- A tool generally available, (except with respect to proprietary data) to customers, manufacturers, authorities and researchers....
- A tool that supports an integrated approach

Simulation tool - Demonstrators

ACEA is supporting the development of two "demonstrators" for verifying the feasibility of the recommended approach. These "demonstrators" are based upon established simulation tools – **Autonomie** (ANL) and **CRUISE** (AVL)

In January 2011 Argonne National Laboratory released the "ACEA Demonstrator" on their website for download (<u>www.autonomie.net</u>)

The "demonstrator" from AVL will be available in July 2011

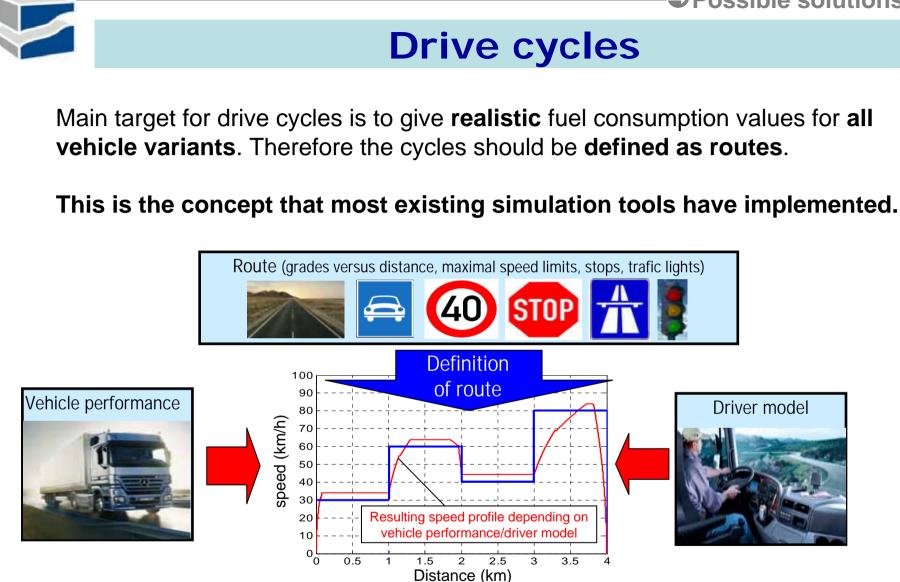
Vehicle classes and missions

	Identification vehicle configuration			Class		on					
	Axle configuration	Chassis configuration	M > D	Vehicle class	Long Haul	One daytrip t	Regional Delivery/Collectic	Urban Delivery	Municipal Utility	Light Off-road	
2 axles	4x2	Rigid + (Tractor)	7,49t-10t	1			R/GVW	R/GVW	R/GVW		
		Rigid + (Tractor)	>10-12t	2		T/R+T/GCW	R/GVW	R/GVW	R/GVW		
		Rigid + (Tractor)	>12-16t	3			R/GVW	R/GVW	R/GVW		
		Rigid	>=16 t	4	R+T/GCW	R+T/GCW	R/GVW	R/GVW	R/GVW		
		Tractor	>=16t	5	T/GCW	T/GCW	T/GCW			T/GCW	
	4x4	Rigid	7,49t-16t	6					R/GVW	R/GVW	
		Rigid	>=16t	7					R/GVW	R/GVW	
		Tractor	>=16t	8						T/GCW	
3 axles	6x2/2-4	Rigid	all GVW	9	R+T/GCW	R+T/GCW	R/GVW		R/GVW		
		Tractor	all GVW	10	T/GCW	T/GCW					
	6x4	Rigid	all GVW	11		R+T/GCW				R/GVW	R/GVV
		Tractor	all GVW	12		T/GCW				T/GCW	T/GCV
	6x6	Rigid	all GVW	13							R/GVV
		Tractor	all GVW	14							T/GCV
4 axles	8x2	Rigid	all GVW	15			R/GVW		R/GVW		L
	8x4	Rigid	all GVW	16						R/GVW	R/GVW
	8x6/8x8	Rigid	all GVW	17							R/GVV

T = Tractor + Semitrailer

R+T = Rigid + Body + Trailer

R = Rigid + Body


GVW = reference weight for FE simulation = vehicle individual GVW released by OEM but maximal up to legal limit (26 t for 3-axle rigid vehice)

GCW = reference weight for FE-simulation = vehicle individual GCW released by OEM but maximal up to legal limit (e.g. 40 t for 18t 4x2 Tractor or 60 t for 6x4 R+T)

ACEA proposed cycles for truck >7.5 t GVW/GCW

Vehicle cycle/mission	Description	Average yearly run distanc (km)	
Long Haul	Delivery to international sites more than one day trip	135.000	
One daytrip	Delivery to national/international sites on a 1 day trip.	115.000 (1 shift) 160.000 (2 shifts)	
Regional delivery/collection	Regional delivery from a central warehouse to local stores (innercity or suburban, also mountain road goods collection,)	60.000	
Urban delivery/collection	Distribution in cities or suburban sites of consumer goods from a central store to selling points.	40.000	
Municipal utility	e.g. garbage trucks, road sweepers,	25.000	
Light off road- construction zone	Construction site vehicles on light mission (e.g concrete mixers) 10% off-road	60.000	
Off- road use - heavy off road	Construction site vehicles on heavy missions. 60% off-raod	40.000	

Cycles could be created by **measurement of representative**, real and long routes and following shortening process with comparable slope, engine load and engine speed profiles. The length of routes depend on the vehicle classes. 20

Additional issues under evaluation

- Reference cycles for all truck and bus missions
- Fuel map certification process
- Determination of total vehicle drag
- Power consumption of auxiliaries
- Concept to cover control strategies
- General concept on trailers and bodies

Key factors for success

Develop a method to **measure** the fuel efficiency of complete heavy duty vehicle with **sufficient precision**.

"If you can't measure it, you can't manage it"

If it is not **precise enough** it will not guide customer and therefore not **strengthen market forces**

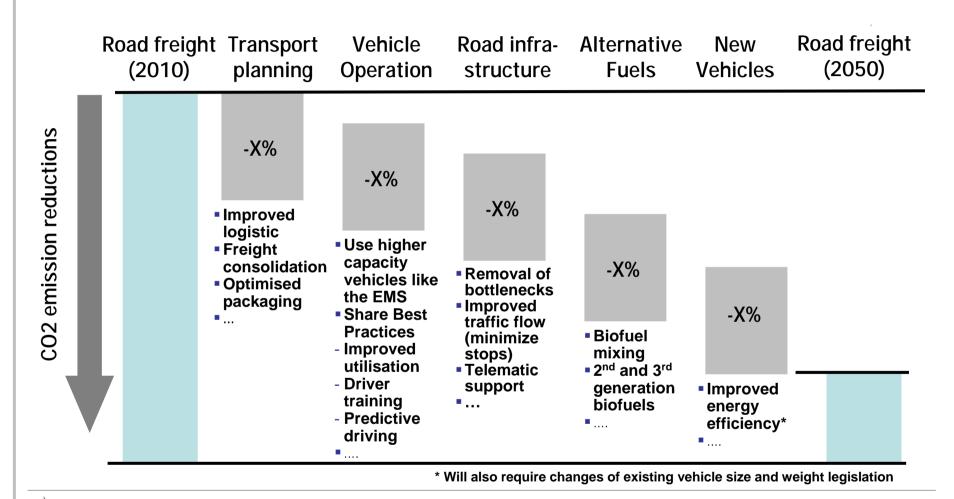
"Certified declaration of fuel efficiency" is also a validation activity of both the method and its precision

ACEA objectives

Customer objective

by providing a "Certified declaration of Fuel Efficiency"

Assist customers in choosing the optimal truck by quantifying <u>relative</u> fuel efficiency/CO2 of truck configuration/ brand choices per application class


Authority objective

by supporting the development of a "Computer tool capable of simulating an Integrated approach"

Enable monitoring and predicting effects of different road freight measures on fuel efficiency and CO2

Integrated Approach

Decoupling of CO2-emissions of road freight transport and economic growth can be achieved by an integrated approach.

Low cost FE measures – ACEA survey

Chassis cab

- Biodiesel (B7+ advanced biofuels)
- Automatic gear shift logic
- Low rolling resistance tyres
- Super single

Body

• Aerodynamic improvements* – front, rear, side and top

Trailers

- Low rolling resistance tyres
- Super single
- Aerodynamic improvements* front, rear, side, top and bottom
- Weight reduction

Vehicle usage

- Driver training
- Eco driving tool Driver support
- Freight consolidation
- Higher capacity vehicles (Wider use of EMS)

Fuels

Fee/Tax related to the global warming potential of fuels

ACEA further supports

- Taking an integrated approach to further CO₂ emission reductions.
- Using cost-effectiveness as the basis for selecting policy measures for the different sectors.
- Studying the inclusion of road freight transport into an international, non-sector specific emission trading scheme.
- Pursuing globally harmonised policies for heavy-duty vehicles.

Vehicle manufacturers are already investing in new technologies to improve fuel efficiency and to reduce CO₂

Mercedes-Benz H2 FC City Bus

SCANIA Ethanol Bus

VOLVO Hybrid Bus

Thank you for your attention!

DAF Hybrid Truck

IVECO Eurocargo Ibrido

MAN Hybrid Distribution Truck