
Efficient use of materials in building design

Catherine De Wolf

Marie Sklodowska-Curie Postdoctoral Fellow Swiss Government Excellence Scholar

Awareness

Why should we care about embodied carbon?

Louis Vuitton Foundation Frank Gehry WHYWHATWHOHOW

Why Embodied Carbon?

Beijing Olympic Stadium, China Arup, 2008

London Olympic Stadium, United Kingdom Buro Happold, 2012

De Wolf C., Hogroian J., Ochsendorf J., "Comparing material quantities and embodied carbon in stadia," *Proceedings of the IASS*, Brasilia, BR, September 17, 2014.

WHY WHAT

WHO

Why Embodied Carbon?

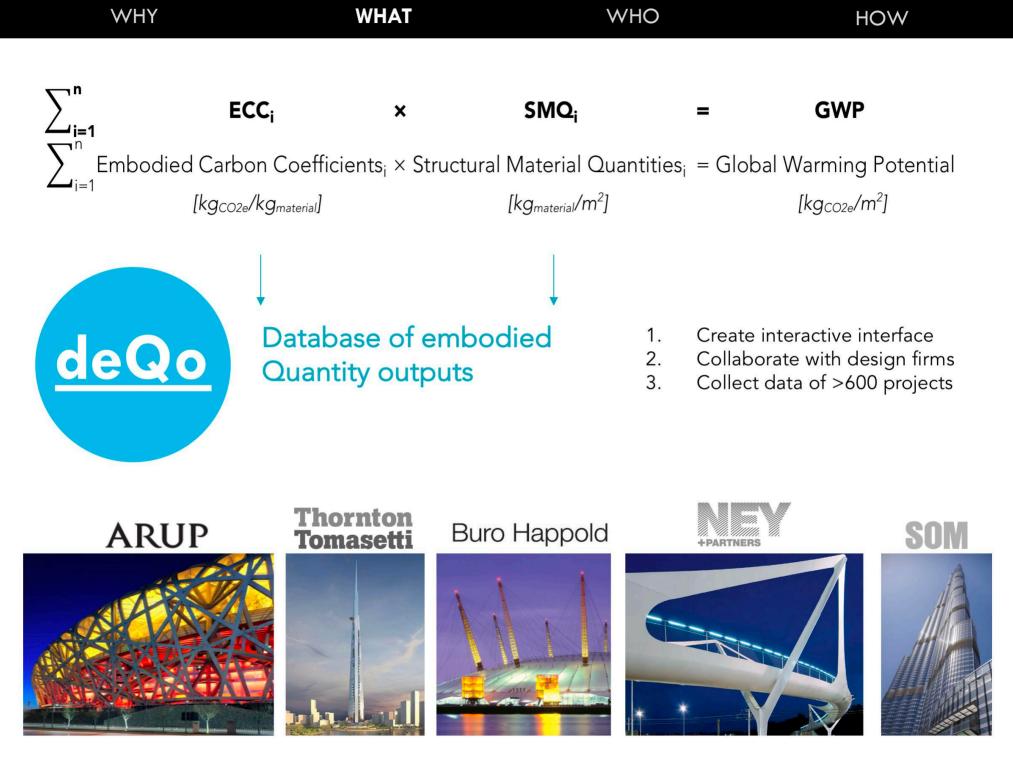
Pantheon, Rome Former roman temple, 119-128 AD

Kingdome, Seattle Naramore, Skilling & Praeger, 1976 WHY WHAT

HOW

Why Embodied Carbon?

WHO


Pantheon, Rome Former roman temple, 119-128 AD

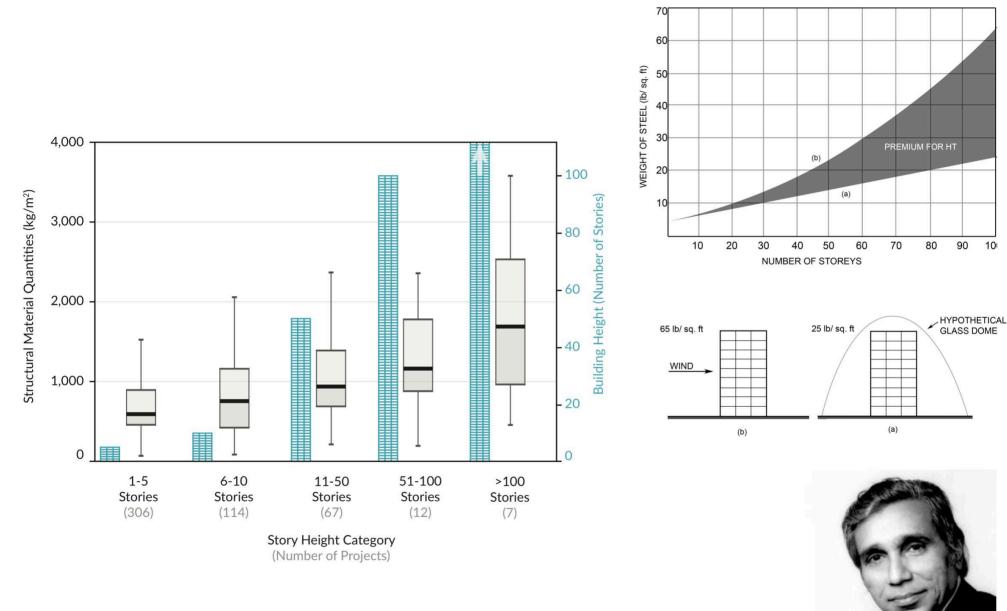
Kingdome, Seattle Naramore, Skilling & Praeger, 1976

Benchmarks

What is the embodied carbon of building structures?

WHY	WHAT		WHO	HOW
Unit system	Metric	*		
Sort by category	Program Category	*		
Value on Y axis	Global Warming Potential (kg-CO ₂ e/m ²)	*		
Filter by	None 😫	*		
Draw graph				

WHY


WHAT

WHO

Unit system	✓ Metric	÷
Sort by category	Imperial	+
Value on Y axis	Global Warming Potential (kg-CO ₂ e/m ²)	\$
Filter by	None 🗘	\$
Draw graph		

WHY	WHAT	WHO	HOW
Unit system	Metric	\$	
Sort by category	✓ Program Category		
Value on Y axis	Program	•	
Filter by	Accredited Rating Scheme	•	
Draw graph	Accredited Rating		
	Region		
	Country		
	Main Structural Material		
	Number of stories		
	Number of Occupants		
	Floor Area (m ²)		
	Average clear span		
	Longest clear span		

WHY	WHAT	WHO	HOW
Unit system	Metric	\$	
Sort by category	Main Structural Material	\$	
Value on Y axis	✓ Globa Warming Potential (kg-CO₂e/m²)	÷	
Filter by	Structural Material Quantity (kg/m²)	+	
Draw graph			

WHO

WHAT

WHY

Simonen K., Rodriguez B., De Wolf C., "Benchmarking the Embodied Carbon of Buildings: Current Knowledge, Uncertainty and Applicability," TAD, 2017.

10

HOW

WHY

WHAT

WHO

HOW

Industry Who can lower the impact of building structures?

WHY	WHAT	WHO	HOW
Industry St	rategies • Structural	Engineers 2050 Co	ommitment
0	o Zero Carbon Struc		

Architects: operational Engineers: embodied AIA 2030 Commitment SE 2050 Commitment

Inspire structural engineers

Provide data to deQo Meet reduction targets

STRUCTURAL ENGINEERING INSTITUTE Sustainability Committee Advancing sustainability in the structural engineering community.

Thornton Tomasetti

WALTER P MOORE

MAGNUSSON KLEMENCIC ASSOCIATES

SIMPSON GUMPERTZ & HEGER

Industry Strategies • Dissemination

"TRULY, WHAT A FANTASTIC, TIMELY, IMPORTANT BOOK!" - PAUL HAWKEN, author of Drawdown and Blessed Unrest

THE NEW CARBON ARCHITECTURE

BUILDING TO COOL THE CLIMATE

BRUCE KING

WHO

Design How low can we go?

Mapungubwe Interpretation Centre Peter Rich, South Africa

WHO

HOW

Low Carbon Design • Resource scarcity

Ilima Primary School, Congo MASS Design Group, 2015

Low Carbon Pathways • Rib-stiffened Funicular Floor

Liew A. *et al.* "Design, fabrication &testing of a prototype, thin-vaulted, unreinforced concrete floor," *Engineering Structures*, 2017 Block P. *et al.* "Compressive assemblies: Bottom-up performance for a new form of construction," *AD Architectural Design*, 2017 Agustí-Juan I., Habert G. "Env. design guidelines for digital fab.," *Journal of Cleaner Production*, 2017

Block Research Group Photo by Nick Krouwel

- 75% self-weight
- 76% steel
- 32% concrete
- 50% CO₂e

V	Ή	Y			

WHAT

WHO

HOW

Reuse • Waste Materials

Circular economy principles Escuela Agustín García Padilla 2017 Venezuela

WHY	WHAT	WHO	HOW
-----	------	-----	-----

Reuse • Proof of Concept

WHY	\backslash	WHAT	WHO		HOW		
	Conclusions						
$\sum_{i=1}^{n} Embodie$	ECC _i	×	SMQ _i	=	GWP		
$\sum_{i=1}^{n}$ Embodie	d Carbon Coefficie	nts _i × Structura	l Material Quantitie	s _i = Global '	Warming Potential		
, ,	$[kg_{CO2e}/kg_{material}]$		[kg _{material} /m ²]		[kg _{CO2e} /m ²]		
Low	ECC	Lov	v SMQ	L	ow GWP		
Low Carbo	on Materials	Structura	al Efficiency		Reuse		

Questions?

Bamboo Cathedral Simon Velez, Colombia, 1999