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: | RAIL . AR
Manufacturing i = Vehicle i = Train Manufacturing i = Ajrcraft

= Transport to Point of Sale = Transport to Point of Sale = Engine
Operation = Propulsion = Propulsion + Auxiliaries = Propulsion (Flight Stages)

Idling

Idling (Stops+Warm Running)

Idling

Typical Sedan Maintenance
Tire Replacement
Battery Replacement

Typical Train Maintenance
Train Cleaning
Flooring Replacement

Typical Aircraft Maintenance
Engine Maintenance and Replacement

Insurance

Maintenance :
i Vehicle Liability

Crew health and benefits
Train liability

Crew health and benefits
Aircraft liability

INFRASTRUCTURE

Construction i = Roadway construction i = Station construction i = Airport construction
i : = Track construction : = Runway/Taxiway/Tarmac construction
Operation = Roadway lighting = Station lighting = Runway lighting

= Herbicide spraying
= Roadway salting

Escalators

Train control

Station parking lighting

Station miscellaneous (e.g., other electrical
equipment)

Deicing fluid production
GSE operation

Maintenance = Roadway maintenance

Station maintenance
Station cleaning

Airport maintenance
Runway/Taxiway/Tarmac maintenance

= Roadside, surface lot, and parking garage
parking

Parking

Station parking

Airport parking

Insurance

Non-crew health insurance and benefits
Infrastructure liability insurance

Non-crew health and benefits
Infrastructure liability

ENERGY PRODUCTION

Extraction, Processing, & Distribution = Gasoline Extraction, Processing, & Distribution
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Diesel or Electricity Raw Fuel Extraction,
Processing, Generation, Transmission, &
Distribution

Raw Fuel Extraction and Processing, Electricity
Generation, Transmission & Distribution
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LIFE-CYCLE GREENHOUSE GAS EMISSIONS

(grams CO,e/Passenger Kilometer Traveled)

0 20 40 60 80 100 120 140 160
Sedan (Gasoline 35 mi/gal) I
Urban Diesel Bus |
Midsize Aircraft I
Bus Rapid Transit (LA Orange) I

Light Rail Transit (LA Gold) | For rail modesf
= Heavy Rail Transit (SF BART) O infrastructure is 30-
o | Commuter Rail (SF Caltrain, Diesel) I 49% of life-cycle GHG

High-speed Rail (CA 2040) I emissions.

Vehicle Operation Propulsion Electricity M Vehicle
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There’s no one-size fits all
: Chester/Horvath model
approach when it comes L :
: Data points in life-cycle continues to be the only
to assessing
, models are not bottom-up model for
transportation : .
: : necessarily transportation
infrastructure, especially : : !
o ) representative. infrastructure life-cycle
rail (diversity of systems, .
: o modeling.
design conditions, etc).

Rail Concrete and Steel Use
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Legacy Infrastructure
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Passenger Rail

Concrete & Steel
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CONCRETE

STATIONS  Aerial (platforms, pier caps, columns,
ﬂ footings); Surface (platforms,
2 footings); Elevated (platforms,
footings); Underground (floor caps,
roof caps, footings, walls).

TRACKS Surface (retaining walls,
= ground slab); Subway
(walls); Aerial (supports,

footings); Ties.
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STEEL

Rebar; Structural steel:
hardware (electrical and
other housing); Fencing.

Gauge; Rebar for structural
steel; Caternary lines and
poles; substations; Electric
third rail; Fencing.

Rail Concrete and Steel Use
from a Life Cycle Lens
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Materials Comparison in Rail Infrastructure
&1 Stations

SURFACE
= Concrete (m3/station): 140 (street-level) to 1,700 (elevated); 12,000 for HSR
= Steel (kg/station): 36 (street-level) to 420 (elevated); 3,100 for HSR

AERIAL
=  Concrete (m3/station): 620 to 15,000
= Steel (kg/station): 160 to 3,700

UNDERGROUND
= Concrete (m3/station): 8,600 to 22,000
= Steel (kg/station): 2,100 to 5,400
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Materials Comparison in Rail Infrastructure
= Tracks

SURFACE
=  Concrete (m3/km): 140 to 560 (high of 4,800 for LA Expo with concrete for ballast)
= Steel (kg/km): 35 to 140 (high of 1,200 for LA Expo)

AERIAL
= Concrete (m3/km): 5,600 to 6,600 (high of 20,000 for LA Expo)
= Steel (kg/km): 1,400 to 1,600 (high of 5,000 for LA Expo)

UNDERGROUND
= Concrete (m3/km): 2,400
= Steel (kg/km): 590
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