Infrastructure materials modelling

Tiffany Vass and Jacob Teter
Experts’ Dialogue on Material Trends in Transport CCM, 8 March 2018
1) Objectives of Analysis

- **Scope**
 - Transport infrastructure: focus on roads and rail
 - Materials of focus: cement and steel

- **Method (recap from morning)**
 - Build historical bottom-up material demand curves & compare to top-down curves
 - Project material demand incorporating technological shifts & material efficiency strategies
 - Material curves feed into industry modelling, within global energy system model analysis
2) Bottom-Up Material Curves: Activity Levels

- **Road lane and rail track km assumptions:**
 - Data from International Road Federation (IRF), International Union of Railways (UIC) and Institute for Transportation and Development Policy (ITDP)
 - *Road categories*: motorway, highway, secondary major & minor
 - *Rail categories*: light rail, metro, inter-city rail & high-speed rail
 - Median lifetimes: concrete pavement roads = 45 years, rail = 40 years
2) Bottom-Up Material Curves: Material Intensities - Roads

- US Federal Highway Administration Statistics: Concrete plus Composite %
 - Motorways: 47%
 - Highways: 27%
 - Secondary: 12%
 - Total: 14%

- Drivers of road type:
 - Economics?
 - Climate?
 - Other?

Proportion of roads by material composition is a key data gap
2) Bottom-Up Material Curves: Material Intensities - Roads

- **Cement proportion of concrete:**
 - Median: 13%
 - Range: 10 to 17%

- **Material intensities:**
 - Concrete use 100 to 150 times that of steel
 - Moderate range: 4 to 14 times differences between low and high values

- **Maintenance - % of surface repaired annually:**
 - Motorways/highways: 0.15%
 - Secondary: 9%
2) Bottom-Up Material Curves: Material Intensities - Rail

- **Cement proportion of concrete:**
 - Median: 10%
 - Range: 7 to 13%

- **Material intensities:**
 - Concrete use 10 to 30 times that of steel
 - Wide range: 2 to 250 times differences between low and high values

- **Maintenance - % of material replaced annually:**
 - All types: 3%
2) Bottom-Up Material Curves: Material Intensities - Rail

- **Adjusted material intensity values based on:**
 - Proportion of surface vs. elevated vs. underground (ITA 2004)
 - Estimates of material used for tunnels (Network Rail 2010)

- **Drivers of variation in rail placement:**
 - Economics?
 - Geography?
 - Other?

Material Intensities Vary Greatly for Surface vs. Elevated vs. Underground
2) Bottom-Up Material Curves: Regional Focus

- **Key data collected so far**
 - Roads: US, Canada, Sweden, India
 - Rail: US, Canada, Italy, Germany, Norway, UK, India, China
 - Key gaps: limited data for Latin America & Africa, as well as Asia and Australia

- **Moving from point data to regional trends**
 - No clear regional patterns so far
 - Trying to understand magnitude of regional differences
3) Future materials use: 2 levers of interest

1) Impact of technological shifts
 - Related to future activity levels in a 2DS scenario

2) Impact of material use efficiency strategies
 - Related to material intensities

Infrastructure Material Demand in 2DS
3) Future materials use: Projecting Activity Levels

- **Total road and rail kilometers**
 - Based on activity projections
 - Low-carbon scenarios incorporate uptake of ‘avoid-shift’ policies
 - Infrastructure utilization assumed to converge to levels in developed countries

- **Split between types of road and rail**
 - Using constant ratios from last year of historical data
3) Future materials use: Projecting Materials Intensities

- **Impact of maximizing material efficiency strategies**
 - Design of infrastructure favoring reuse, modularity, reduced material use, longer-lifetimes
 - Minimize losses during manufacturing & construction phases
 - Demolition techniques favoring scrap collection
 - Re-use and recycling maximized

- **Literature suggests potential for significant improvements in material use efficiency**
 - Wide variability among individual LCAs suggests potential to provide similar service using different quantities of materials
 - Various methods to improve material efficiency and reduce wastage

- **Steel**
 - **Steel use efficiency improvements**
 - Average utilization of structural steel in some buildings may be up to 50% below their capacity, suggesting at least some degree of reduction potential without reducing safety or service (Moynihan & Allwood 2014)
 - **Steel waste reductions**
 - Steel reinforcement wastage rate: median of 11%, minimum of 4% (Formoso et al. 2002)
3) Future materials use: Projecting Materials Intensities

- **Cement use efficiency improvements**
 - Improvement methods (Damineli et al. 2010):
 - Use of dispersants
 - More efficient packing of particles
 - Increase in compressive strength
 - Structural design
 - Active binder efficiency: 44% difference between minimum and average binder intensity for concrete of 30 MPa compressive strength (UNEP 2016)
 - WWF-Lafarge Report sets objective of 15% consumption reduction through efficiency by 2050

- **Cement waste reductions**
 - On-site mixing leads to more wastage than ready-mix concretes
 - Increased industrialised production of concrete could reduce overall cement consumption by 10% (UNEP 2016)

![Graph showing compressive strength versus total binder consumption.](image)

Fig. 1. Compressive strength versus total binder consumption. There are 604 results from Brazil (circles) and 981 international (squares).

Source: Damineli et al. (2010), Measuring the eco-efficiency of cement use
4) Conclusions and Next Steps

- **Objective: to estimate global material use (historically and in future)**
 - Initial top-down bottom-up comparisons are within the correct order of magnitude
 - Many data gaps and uncertainties exist
 - Roads: asphalt vs. concrete vs. composite
 - Rail: underground vs. elevated vs. surface
 - Regional variation
 - Challenges of extrapolating from precise individual LCAs to broader trends
 - Future assumptions have even greater uncertainty

- **Next steps: continued data collection and refinement**
 - Any additional data and feedback are welcome!