

Infrastructure materials modelling

Tiffany Vass and Jacob Teter

Experts' Dialogue on Material Trends in Transport CCM, 8 March 2018

1) Objectives of Analysis

Scope

- Transport infrastructure: focus on roads and rail
- Materials of focus: cement and steel

Method (recap from morning)

- Build historical bottom-up material demand curves & compare to top-down curves
- Project material demand incorporating technological shifts & material efficiency strategies
- Material curves feed into industry modelling, within global energy system model analysis

2) Bottom-Up Material Curves: Activity Levels

iea

Road lane and rail track km assumptions:

- Data from International Road Federation (IRF), International Union of Railways (UIC) and Institute for Transportation and Development Policy (ITDP)
- Road categories: motorway, highway, secondary major & minor
- Rail categories: light rail, metro, inter-city rail & high-speed rail
- Median lifetimes: concrete pavement roads = 45 years, rail = 40 years

2) Bottom-Up Material Curves: Material Intensities - Roads

- Motorways: 47%
- Highways: 27%
- Secondary: 12%
- Total: 14%
- Drivers of road type:
 - Economics?
 - Climate?
 - Other?

Proportion of roads by material composition is a key data gap

Cement proportion of concrete:

- Median: 13%
- Range: 10 to 17%

Material intensities:

- Concrete use 100 to 150 times that of steel
- Moderate range: 4 to 14 times differences between low and high values
- Maintenance % of surface repaired annually:
 - Motorways/highways: 0.15%
 - Secondary: 9%

Cement proportion of concrete:

- Median: 10%
- Range: 7 to 13%

Material intensities:

- Concrete use 10 to 30 times that of steel
- Wide range: 2 to 250 times differences between low and high values
- Maintenance % of material replaced annually:
 - All types: 3%

Adjusted material intensity values based on:

- Proportion of surface vs. elevated vs. underground (ITA 2004)
- Estimates of material used for tunnels (Network Rail 2010)
- Drivers of variation in rail placement:
 - Economics?
 - Geography?
 - Other?

Material Intensities Vary Greatly for Surface vs. Elevated vs. Underground

Key data collected so far

- Roads: US, Canada, Sweden, India
- Rail: US, Canada, Italy, Germany, Norway, UK, India, China
- Key gaps: limited data for Latin America & Africa, as well as Asia and Australia

Moving from point data to regional trends

- No clear regional patterns so far
- Trying to understand magnitude of regional differences

Reporting regions

North America United States Central & South America Brazil Europe **European Union** Africa South Africa Middle East Eurasia Russia Asia Pacific China India Japan Southeast Asia

3) Future materials use: 2 levers of interest

1) Impact of technological shifts

Related to future activity levels in a 2DS scenario

2) Impact of material use efficiency strategies

Related to material intensities

Infrastructure Material Demand in 2DS

3) Future materials use: Projecting Activity Levels

Total road and rail kilometers

- Based on activity projections
- Low-carbon scenarios incorporate uptake of 'avoid-shift' policies
- Infrastructure utilization assumed to converge to levels in developed countries

Split between types of road and rail

Using constant ratios from last year of historical data

Impact of maximizing material efficiency strategies

- Design of infrastructure favoring reuse, modularity, reduced material use, longer-lifetimes
- Minimize losses during manufacturing & construction phases
- Demolition techniques favoring scrap collection
- Re-use and recycling maximized
- Literature suggests potential for significant improvements in material use efficiency
 - Wide variability among individual LCAs suggests potential to provide similar service using different quantities of materials
 - Various methods to improve material efficiency and reduce wastage
- Steel

Steel use efficiency improvements

- Average utilization of structural steel in some buildings may be up to 50% below their capacity, suggesting at least some degree of reduction potential without reducing safety or service (Moynihan & Allwood 2014)
- Steel waste reductions
 - Steel reinforcement wastage rate: median of 11%, minimum of 4% (Formoso et al. 2002)

3) Future materials use: Projecting Materials Intensities

Cement use efficiency improvements

- Improvement methods (Damineli et al. 2010):
 - Use of dispersants
 - More efficient packing of particles
 - Increase in compressive strength
 - Structural design
- Active binder efficiency: 44% difference between minimum and average binder intensity for concrete of 30 MPa compressive strength (UNEP 2016)
- WWF-Lafarge Report sets objective of 15% consumption reduction through efficiency by 2050

Cement waste reductions

- On-site mixing leads to more wastage than ready-mix concretes
- Increased industrialised production of concrete could reduce overall cement consumption by 10% (UNEP 2016)

Source: Damineli et al. (2010), Measuring the eco-efficiency of cement use

4) Conclusions and Next Steps

- Initial top-down bottom-up comparisons are within the correct order of magnitude
- Many data gaps and uncertainties exist
 - Roads: asphalt vs. concrete vs. composite
 - Rail: underground vs. elevated vs. surface
 - Regional variation
- Challenges of extrapolating from precise individual LCAs to broader trends
- Future assumptions have even greater uncertainty

Next steps: continued data collection and refinement

Any additional data and feedback are welcome!

