Experiences in the Development of Wind Energy in Germany

Joachim Kutscher
Vice Chair IEA Wind Energy Agreement

Research Centre Juelich GmbH, Germany
Project Management Juelich
Content

- Statistics of wind energy in Germany 2010
- The incentive system for wind energy
- Economic impact of wind energy
- Wind energy research in Germany
- Benefits from participation in the IEA Wind Energy Agreement
Wind Energy Changes our Surroundings and Electrical Energy Production.....

21 600 wind turbines at present
The German Electrical Energy Mix 2010

Total electrical energy production: 621.0 TWh
Wind energy production: 36.5 TWh

Source: BdEW
Wind Energy 2010 and Targets

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total installed wind generation</td>
<td>27,204 MW</td>
</tr>
<tr>
<td>Offshore installation at present</td>
<td>appr. 250 MW</td>
</tr>
<tr>
<td>New wind generation installed 2010</td>
<td>1,551 MW</td>
</tr>
<tr>
<td>Total electrical output from wind</td>
<td>36.5 TWh</td>
</tr>
<tr>
<td>Wind generation as % of national gross electrical consumption</td>
<td>6 %</td>
</tr>
<tr>
<td>New targets: Electricity from renewable energies</td>
<td>35 % of electrical energy consumption by renewables and 10 GW offshore wind by 2020. 80 % RE in 2050.</td>
</tr>
</tbody>
</table>
Wind Power Development in Germany

Installed Capacity per Year, MW
Installierte Leistung/Jahr, MW

Accumulated Installed Capacity, MW
Kumulierte installierte Leistung

second half of the year / zweites Halbjahr
first half of the year / erstes Halbjahr
accumulated installed capacity / kumulierte installierte Leistung

© 2011 DEWI GmbH
Renewable Energy Sources Act (EEG)

The Renewable Energy Sources Act (EEG, precursor since 1991) is the main incentive for Germany’s wind energy development.

The produced energy is sold under a fixed feed-in tariff.

TSO are obliged to connect the wind farms to the grid and to take over the wind electricity.

A project built onshore in 2010 had a premium tariff of € 91 per MWh. (Medium price at for conventional electricity at the electricity stock exchange market appr. € 50 MWh).

Digression of 1 % based on the year of construction of the wind farm.

Extra payment (Boni) for improved grid compatibility and repowering of WT.

Offshore wind farms: € 150 per MWh (after 2015 € 130 per MWh) paid for 12 years. Boni regulation considering distance from coast and water depth.
Mean Wind Velocities in Germany

North Sea: 10 m/s

\[P_{\text{Wind}} = \frac{1}{2} \delta F v^3 \]
Share of Potential Annual Wind Energy Yield of the Net Energy Consumption in the German States

<table>
<thead>
<tr>
<th>State</th>
<th>Share in the net electrical energy consumption, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachsen-Anhalt</td>
<td>52.1</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>45.3</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>44.0</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>42.8</td>
</tr>
<tr>
<td>Thüringen</td>
<td>25.1</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>12.3</td>
</tr>
<tr>
<td>Sachsen</td>
<td>8.6</td>
</tr>
<tr>
<td>Bremen</td>
<td>8.5</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>4.1</td>
</tr>
<tr>
<td>Hessen</td>
<td>4.0</td>
</tr>
<tr>
<td>Saarland</td>
<td>2.5</td>
</tr>
<tr>
<td>Bayern</td>
<td>2.4</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>1.0</td>
</tr>
<tr>
<td>Hamburg</td>
<td>0.9</td>
</tr>
<tr>
<td>Berlin</td>
<td>0.6</td>
</tr>
<tr>
<td>Total Germany</td>
<td>9.7</td>
</tr>
</tbody>
</table>

© 2011 DEWI GmbH
Benefits of a Growing Wind Energy Market in the World

Top 5 Countries Installation 2010

<table>
<thead>
<tr>
<th>Country</th>
<th>Installed Wind Power / MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>40,000</td>
</tr>
<tr>
<td>USA</td>
<td>30,000</td>
</tr>
<tr>
<td>Deutschland</td>
<td>20,000</td>
</tr>
<tr>
<td>Spanien</td>
<td>10,000</td>
</tr>
<tr>
<td>Indien</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Growth in 2010

<table>
<thead>
<tr>
<th>Country</th>
<th>New Wind Power in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>20,000</td>
</tr>
<tr>
<td>USA</td>
<td>5,000</td>
</tr>
<tr>
<td>Indien</td>
<td>2,000</td>
</tr>
<tr>
<td>Spanien</td>
<td>1,000</td>
</tr>
<tr>
<td>Deutschland</td>
<td>500</td>
</tr>
</tbody>
</table>

Turnover of German wind turbine and component manufacturers 2009: 6.4 Bill. Euro

Export share 2009: 75 %

Employees in the total wind industry: 102,000

Source: BWE
New Multi MW Turbine Technology - Examples

<table>
<thead>
<tr>
<th>Turbine</th>
<th>Power (MW)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enercon E 126</td>
<td>7.5</td>
<td>direct drive</td>
</tr>
<tr>
<td>AREVA-Wind M 5000</td>
<td>5</td>
<td>planet gear</td>
</tr>
<tr>
<td>REpower 6 M</td>
<td>6</td>
<td>gear box</td>
</tr>
<tr>
<td>BARD 6.5,</td>
<td>6.5 MM</td>
<td>gear box</td>
</tr>
<tr>
<td>Nordex</td>
<td>6</td>
<td>direct drive (under development)</td>
</tr>
</tbody>
</table>

![Enercon E 126](image1.png)

![BARD 5.0](image2.png)

![AREVA Wind M5000](image3.png)
Investment in R+D is the Basis to Excelerate the Development and to Keep the Position in the World Market

Responsibility: Federal Environmental Ministry (BMU)

General Objectives of financial support of R+D:

• To reduce costs of wind energy.
• To improve technical performance and availability of wind turbines.
• To develop offshore adopted wind technology.
• To improve grid compatibility.
• To develop wind energy in accordance with the environment.
Examples of R+D Activities I

Offshore Testsite alpha ventus (2010)

- 12 x 5 MW, 45 km from shore, 28 m water depth
- Accompanying Research Program RAVE (43 mill Euro)
- 1.200 sensor applications at rotor blades, turbine, tower and foundation
- Development of a general technical offshore monitoring program (OWMEP)
- RAVE-database
- Extensive environmental monitoring program
- 45 institutes and companies involved
Examples of R+D Activities II

• In house test facilities for rotor blades, drive trains and offshore foundations.

• Development of new drive train conceptions.

• Development of offshore foundations for wind turbines.

• Wind as a resource, investigation of wind meteorological and oceanographic conditions at sea with the three FINO offshore research platforms.

• Environmental research (birds, sound, etc.).

• Technologies for grid connection of offshore wind farms and energy storage.
IEA Wind has broad membership

OECD Participating Countries:

Europe:
- Austria, Denmark, Finland, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the European Commission

North America:
- Canada, Mexico, and the United States

Asia and Pacific:
- Australia, Japan, and South Korea

International Organizations (sponsors):
- Chinese Wind Energy Association and the European Wind Energy Association
86% of the world wind capacity is in IEA Wind member countries.
Active Common Research Tasks of IEA Wind

- WAKEBENCH: Wind farm flow models (Task 31)
- Dynamic Models for Offshore Wind Energy (Task 30)
- Aerodynamic Rotor Data Analysis ...(Task 29)
- Social Acceptance of Wind Energy Projects (Task 28)
- Consumer Labeling of Small Wind Turbines (Task 27)
- Cost of Wind Energy (Task 26)
- Power Systems with Large Amounts of Wind...(Task 25)
- Wind Energy in Cold Climates (Task 19)
- Base Technology Information Exchange (Task 11)
- Lidar Wind Measuring Systems (Task 31)
Task 11 Topical Experts Meetings: exclusively for experts from participating member countries (recent topics explored)

- High reliability solutions and innovative concepts for offshore wind technology (30 experts from 11 countries)
- Micrometeorology inside wind farms and wakes between wind farms (15 experts; 9 countries)
- Wind farms in complex terrain (12 experts; 6 countries)
- Radar, radio and links with wind turbines (27 experts; 8 countries)
- Remote wind speed sensing techniques using Sodar and Lidar (31 experts; 11 countries)
- Sound propagation models and validation (17 experts; 9 countries)
Task 19 addresses cold climate issues for wind energy

- Establishes a site classification scheme
- Explores technologies to increase productivity
- Develops tools to predict performance
Transmission system operators and wind developers benefit from IEA Wind Tasks

- Dynamic models of wind farms for power system studies (Task 21 final report)

- Integration of wind and hydropower systems (Task 24 final report)

- Design and operation of power systems with large amounts of wind power (Task 25 Recommendation Reports)
Benefits for Germany from the participation in the IEA Wind Energy Agreement

Getting policy and technical information on the development in leading and up coming wind energy countries from first hand.

IEA Wind is a platform to make our wind technology known in the world. Possibility for researchers to work in the IEA-Wind Tasks together with international experts on important issues of wind energy for low costs.

The German research community benefits from scientific exchange with leading experts of other countries.

At the technical tours of the Executive Committee Meetings one can see what otherwise is difficult to see (industry, institutes).
IEA Wind contacts

Chair – Hannele Holttinen, Finland
(hannele.holttinen@vtt.fi)

Vice Chair – Joachim Kutscher, Germany
(joachim.kutscher@fz-juelich.de)

Secretary – Patricia Weis-Taylor, United States
.ieawind@comcast.net

www.ieawind.org