Organisation of works

Session 1a

Reactor:

Session 1a

Session 1b

- Gen II & Gen III/III+
- **Long Term Operation for existing fleet**
- Impact of Fukushima (upgrades, design)
- **Small (Modular) Reactors**
- **Gen IV technologies**
- Non-electric applications ...
- Fuel cycle:
 - Front end
 - Back end: **Waste management**
 - reprocessing

 - **Decommissioning** ...

Safety & Regulation Session 4 Safety standards, requirements, research

- Regulation

 - Institutional aspects (new comer countries)

Transverse:

- I&C
 - Remote handling
 - Proliferation resistance &
 - physical protection Security ...
- Barriers to Deployment: Session 2
- **Standardisation**
- Harmonisation
- Licensing
- Supply chain
- Economics & Finance

Human resources ...

- Competitiveness
- **Electricity markets**
 - Financing mechanisms ...

Session 3

Technology development needs for nuclear energy 1.a: Reactor technology

Henri PAILLERE
OECD/NEA Nuclear Development Division

IEA / NEA Nuclear Technology Roadmap Update 23-24 January 2014, Paris

Reactor technology today

Nuclear Reactors: Generations I to IV

NEA Technology trends: reactors under construction

Country	Number	Gen II	Gen III/III+	Other	Type (in bold Gen III/Gen III+)
Argentina	1	1			PHWR
Belarus	1		1		VVER-491
Brazil	1	1			PWR
China	29	20	8	1	PWR, AP1000, EPR, AES-92 , HTR
Finland	1		1		EPR
France	1		1		EPR
India	6	5		1	PHWR, VVER, SFR
Japan	2		2		ABWR
Korea	5	1	4		APR1400 , PWR
Pakistan	2	2			PWR
Russia	10	2	5	3	VVER1200 , VVER1100, SMR, SFR
Slovakia	2	2			PWR
Taiwan, China	2		2		ABWR
United Arab Emirates	2		2		PWR ABWR APR-1400 VVER1000
Ukraine	2	2			VVER1000
USA	5	1	4		PWR, AP1000
Total	72	37	30	5	Representing about 71 GWe net capacity

NEA Technology trends: reactors under construction

Gen III/III+ reactors under construction

In IAEA/PRIS database (end 2013): 30 out of 72 reactors under construction are Gen III/GenIII+

AP1000

Sanmen (2), Haiyang (2), Voglte (2), Summer (2)

Olkiluoto, Flamanville, Taishan (2)

ABWR Ohma, Shimane, Lungmen (2)

APR-1400

Shin-Kori (2), Shin-Ulchin, Barakah (2)

VVER 1000/1200

Novovoronezh (2), Leningrad (2), Baltik, Ostrovets, Tianwan (2)

Innovation for current nuclear systems

Safety

 Severe accident research, mitigation, safety upgrades, improved assessment methods (deterministic & probabilistic), human & organisational factors

Competitiveness

- Better exploitation of energetic content of the nuclear fuel (high burn up, optimised fuel assemblies) (but more challenging for materials, ageing), need more accurate core management modelling tools and instrumentation
- E.g. power uprates
- Equipment monitoring & maintenance techniques [I&C, robotics, remote handling, ...] & sophisticated core management → longer cycles, shorter maintenance and refueling outages, → high availabilities

LTO

- (understanding of physical phenomena of ageing, irradiation and corrosion)
- Characterisation methods, modelling, in-service inspection, non destructive testing

Management of waste:

- Management of low level waste including decommissioning of nuclear installations (including transport and disposal), reducing LLW effluents and discharges
- High level waste repositories (geological disposal)

Fuel cycle:

For countries reprocessing spent fuel: improved separation, reprocessing & vitrification processes and technologies to reduce effluents, reduce waste volume, extend range of fuels to be reprocessed and waste to be vitrified.

Innovations for near term nuclear systems

Construction:

 More standardised design to reduce licensing time, capital costs and construction time

• Operation:

- Higher flexibility (e.g. load following capabilities)
- Higher availability, longer operating life (60 years)

Safety:

- Reduced probability of core melt accidents
- Minimal effect on the environment in case of severe accident (consequences limited to NPP)

Cross-cutting:

- Digital technologies (advanced diagnostics, reliability, human performance support...)
 - But: Regulatory uncertainty & business risk uncertainty delaying deployment of new technologies

Others...?

Discussion – your input

Your views on:

- technologies, their potential, their deployment "target" (markets)
- How can technology help bring costs down
- Barriers, technological or not
- R&D challenges
- Operational challenges
- Resilience / robustness against future challenges (electricity systems with high % of var. RES, Climate Change, ...)
- Best practices, lessons learnt
- Policy recommendations
- **—** ...

Let the discussion begin...