

THE DIRECTION
OF THE 2014
NUCLEAR
ROADMAP

Technology Roadmap

Nuclear Energy

Ron Cameron

Head, Nuclear Development

Division

OECD Nuclear Energy Agency

2010 Nuclear Roadmap

The major topics covered were:

- Status and near-term deployment of current designs
- Required growth to fulfil the Blue Map requirements
- Technology developments to 2050
- Policy, financial and social aspects
- Action Plan
- Technology development included:
 - Near-term evolutions, waste, Gen IV, SMRs and co-generation
- Policy, financial and social covered:
 - Legal and regulatory
 - Financing
 - Civil society
 - Capacity building
 - Safeguards and security

Key findings 2010 roadmap

- Nuclear is a proven technology and can play an important role in a low-carbon strategy
- Installed capacity could reach 1 200 GW and supply 24% of the world's electricity in 2050 (ETP 2010)
- Political support and public acceptance are key for implementation of a nuclear programme
- Financing nuclear is another key challenge
- Expansion of nuclear industry capacities and skilled workforce
- In the longer term, GEN IV technologies could reduce costs and improve performance and security

Developments since 2010 and consideration for 2014 update

- The Fukushima Daiichi accident :
 - Affects on development rates
 - Decisions on accelerating phasing out nuclear capacity
 - Stress tests and associated safety upgrades
 - Impact on costs of upgrading, new build and LTO
- Status of the existing fleet:
 - Capacity affected by phase-outs and premature shutdowns
 - Life extension decisions
 - Accelerated move to Generation III reactors
 - Slow progress of Generation IV
 - Revitalised interest in SMRs, especially in the US
- Fuel cycle:
 - Fuel developments
 - Waste repository progress and EU directive

Developments since 2010 and consideration for 2014 update

- The increased attention to decommissioning :
 - From shutdown reactors
 - Progress with technologies
 - Funding
 - Waste management
- Financing and markets:
 - Impact of liberalised markets and utility capitalisation
 - Assuring price stability UK 'strike price' approach
 - BOO financing and increased equity deals
- Fuel cycle uranium supply:
 - End of Russian-US agreement
 - Large increase in reserves
 - Increased attention to tailings
 - Slow progress on new mines

Developments since 2010 and consideration for 2014 update

- The trends in public acceptability:
 - From steep decline to slow return to support in many countries
 - Waste management
- Climate Change:
 - At political level, lower levels of commitment to reducing GHG emissions – hence potentially less importance to role of nuclear
 - At the same time, growing awareness of extreme weather events, pollution (China) → need for clean, low C technologies will grow
- Vendors:
 - New vendors emerging: ROSATOM foreign sales, China's ambitions
- Financial crisis:
 - Low demand, over capacity (generation), reduced investment capabilities

Nuclear can contribute to 2DS, but the following will need be addressed:

- Safe operation of nuclear power plants
- Lower investment costs, shorter construction times, simplification of design, standardisation

 But also:
- But also:
 - Safe, responsible, cost-effective management of RW

Affordability

Proliferation

Acceptance

Technology

- Safe and cost-effective management of decommissioning of existing fleet (greenfield)
- → Public acceptance
- → Increasing role of nuclear in energy policies.
- Technology plays an essential role (but not sufficient)

Robustness of Roadmap

- Identification of threats & opportunities to 2050
 - Must think beyond the current role of nuclear energy in our energy systems
- Technologies ready to address:

New Opportunities:

- New markets for nuclear? (process) heat, hydrogen, water... other?
 Mitigation of potential threats:
- Operation of NPPs in new types of electricity systems
- Effect of climate change (Extreme Weather Events)
- Uranium supply (geopolitical issues)
- More competitive technologies (alternative to nuclear energy)
- Another nuclear accident?
- Other threats?

Input to the Roadmap, examples

Objectives of this workshop

- Discuss the latest developments and how they are influencing the nuclear energy sector
- Identify issues that we have not mentioned
- Identify game changers, technological improvements, R&D that can lead to:
 - Faster deployment rate of new build
 - Wider implementation of geological disposal solutions for HLW
 - Safe and cost-efficient decommissioning of shut down facilities
 - Improved economics and competitiveness while maintaining highest levels of safety
- Views of industry, utilities on future prospects, technology evolutions
- Recommendations to policy makers

Discussion - your input

- Your views on the future of nuclear in a low carbon energy system:
 - technologies, their potential, their deployment "target"
 - Barriers, technological or not
 - R&D challenges
 - Best practices, lessons learnt
 - Policy recommendations

Let the discussion begin...