Hydrogen Refuelling Stations and Role of Utilization Rates: Key Messages and Issues

Marcel Weeda,
Energy research Centre of the Netherlands (ECN)
Operating Agent IEA HIA Task28: Large-scale Hydrogen Delivery Infrastructure

IEA Hydrogen Roadmap Europe Workshop,
IEA HQ, Paris, July 10, 2013
Key Messages Hydrogen Distribution and Refuelling Stations for Transport

• All hydrogen delivery options are technically feasible – there are no technical issues that cannot be overcome

• There is no blueprint for the type of hydrogen delivery infrastructure that needs to be rolled out – everything is possible

• Best practical and economic combination depends on specific national, regional and local situation, especially in the pre-commercial phase – existing industrial hydrogen infrastructure, energy mix, energy prices, safety regulation …

• CO₂ targets influence production mix, rollout strategy, and costs

• Standardisation is key to drive down the cost of hydrogen refuelling stations – this requires consistent and harmonised RCS, and standardisation of technical components and systems
Comparison H₂ delivery concepts

<table>
<thead>
<tr>
<th>Distribution option</th>
<th>Very small ≤ 80 kg/day</th>
<th>Small ~ 200 kg/day</th>
<th>Medium ~ 400 kg/day</th>
<th>Large ~1000 kg/day</th>
<th>Very large ≥ 1000 kg/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site electrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-site reforming</td>
<td>On-site power requirement may become an issue: 400 kg/day ≈ 1 MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGH₂ truck</td>
<td>Delivery of 300 kg up to potential maximum of 1000 kg per truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH₂ truck</td>
<td>Relatively large boil-off for demand levels in early markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGH₂ pipeline</td>
<td>Due to high investments pipelines are not likely in early markets unless already available</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Color coding:
- **Very likely**
- **Possible**
- **Less likely**

- Differences in general applicability based on main differentiating characteristics, or the most demanding or problematic requirements
- Examples: CAPEX, amount of hydrogen per delivery, footprint (external safety zone), mitigation CO₂ emissions, …
HYDROGEN IMPLEMENTING AGREEMENT

Key remaining issues regarding HRS

- Effective strategies for rapid increase of capacity utilisation of HRS
- Tension between desire for fast maximum market coverage (many small stations) and need for rapid optimization of the HRS business case (as little as possible stations with as large as possible capacity)
- Relatively low average HRS utilisation in a growing network because of need for continuous addition of new capacity (in discrete quantities)
- Combining of hydrogen with conventional filling stations, or not, and finding of locations with sufficient space for future expansion of capacity
- Proof of hardware reliability (compressors, hoses, nozzles, seals, …) under conditions of intensive practical use
- Suitable method for periodic inspection and certification of the accuracy of H₂-meters, which is necessary to be able to sell hydrogen to customers
- Cost-effective monitoring method to be able to demonstrate that the quality of dispensed hydrogen complies with applicable quality standards
Back-up slides

IEA Hydrogen Roadmap Europe Workshop,
IEA HQ, Paris, July 10, 2013
Key Messages on Status of Hydrogen with Focus on Transport Applications

- There are no technical barriers that cannot be solved – not technology development but market development is the main bottleneck.
- Most major car OEMs have commercialisation plans.
- Many commercialisation efforts are on-going and starting up (European H2 Mobility initiatives, SHHP, FCCJ, H2USA, …)
- Renewed and increasing focus on hydrogen from the perspective of a sustainable energy system – renewable hydrogen offers a major option for making available of the energy from intermittent renewable sources, both for electricity applications, as well as for a wide range of non-electricity end-use applications of energy.
Pre-commercial status may have varying definitions across the world. A pre-commercial stage may be considered as a first bridging step between initial demonstration activities and commercial operations. It covers moving from isolated demonstration sites towards a network density allowing to meet hydrogen fuel demand of 10,000 – 100,000 cars or the equivalent of <1% of the existing car population.
Hydrogen Distribution and Refuelling Stations Options

<table>
<thead>
<tr>
<th>Production</th>
<th>Delivery</th>
<th>Refuelling Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>CGH₂ Truck</td>
<td>CGH₂</td>
</tr>
<tr>
<td></td>
<td>CGH₂ Pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LH₂ Truck</td>
<td>CGH₂</td>
</tr>
<tr>
<td></td>
<td>LH₂ Liquid fuel tank truck</td>
<td>LH₂ & CGH₂</td>
</tr>
<tr>
<td>On-site Electrolysis</td>
<td>Water supply & Electricity grid</td>
<td>CGH₂</td>
</tr>
<tr>
<td>Reforming</td>
<td>Natural Gas pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid fuel tank truck</td>
<td></td>
</tr>
</tbody>
</table>

CGH₂: Compressed Gaseous Hydrogen (for filling of 350 bar and 700 bar hydrogen)

LH₂: Liquid Hydrogen (for filling of 350 bar, 700 bar, liquid and cryo-compressed hydrogen)
H2 Mobility Germany

Standardisation effort for HRS

<table>
<thead>
<tr>
<th></th>
<th>Very small HRS</th>
<th>Small HRS</th>
<th>Medium HRS</th>
<th>Large HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of refuelling positions</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Number of refuellings per hour per position</td>
<td>2.5</td>
<td>6</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Number of back-to-back refuellings per refuelling position</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Maximum waiting time to fuel consecutive cars</td>
<td>20 min.</td>
<td>5 min.</td>
<td>5 min.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Number of consecutive hours to meet performance specifications</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>24/7</td>
</tr>
<tr>
<td>Average daily number of refuellings</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>125</td>
</tr>
<tr>
<td>Maximum daily number of refuellings</td>
<td>20</td>
<td>38</td>
<td>75</td>
<td>180</td>
</tr>
<tr>
<td>Maximum hourly hydrogen throughput</td>
<td>18 kg</td>
<td>34 kg</td>
<td>67 kg</td>
<td>224 kg</td>
</tr>
<tr>
<td>Average daily hydrogen throughput</td>
<td>56 kg</td>
<td>168 kg</td>
<td>336 kg</td>
<td>700 kg</td>
</tr>
<tr>
<td>Maximum daily hydrogen throughput</td>
<td>80 kg</td>
<td>212 kg</td>
<td>420 kg</td>
<td>1000 kg</td>
</tr>
<tr>
<td>Number of cars per station (approx.)</td>
<td>100</td>
<td>400</td>
<td>800</td>
<td>1600</td>
</tr>
</tbody>
</table>

Source: H2 Mobility, 70MPa HRS Standardisation – Functional description, V1.1 07-06-2010