Steel & Hydrogen

Jean-Pierre BIRAT, Secretary General, ESTEP

IEA Hydrogen Roadmap
Paris, 9-10 July 2013
Main messages

1. H₂ is (would be) a very good reducing agent to make steel from iron ore (integrated production route)
2. the steel sector produces large amounts of H₂
3. H₂ is competing with the direct use of electricity (electrolysis of iron ore) for steelmaking
4. steel would be an enabler of the H₂ economy
Hydrogen to substitute for coke? (1)

- 570 Nm3/t DRI
- world potential need: 610 GNm3/yr or 52 Mt/yr
- EU potential need: 68 GNm3/yr or 5.8 Mt/yr
- historically, a CIRCORED plant was built and ran in Trinidad (presently mothballed & owned by ArcelorMittal). Other processes studied at pilot scale (TRL6) and lab.
- re-evaluated as part of the ULCOS program. Good substitute for coke (reducing agent), but no visibility in terms of availability and cost of hydrogen: work put on the back burner! Fundamental work in the US (flash smelter, Utah)
- potential market for H$_2$: 50% for transport, 25% for the chemical sector and 25% for the steel sector, major uncertainty!
H₂, a by-product of steel production? (2)

- H₂ is a major component of coke oven gas (COG) (60%)
- worldwide, 12.8 Mt/yr of H₂ in 2011
- today, COG is burned in the internal energy network of the steel mill (including power plant)
- many potentially higher value uses of COG were studied (ethanol, methanol, DME). One H₂ production unit used to be operated in Belgium (CARCOKE, 1980-1996). No implementation left today, except some injection in BF
- development work carried out to sell hydrogen ex COG and produce some more by reforming CH₄ in COG, driven by the expected market for FCV - which did not materialized as quickly as expected (JAPAN: COURSE 50)
- this H₂ might be made available to non-steel users, depending on price and price of substitution gas
H₂ or direct use of electricity? (3)

the ULCOS program has thus chosen to develop electrolysis (ULCOWIN, ULCOLYSIS) as an "ULCOS solution", rather than H₂ direct-reduction.
Steel an enabler for the H$_2$ economy? (4)

- **pipelines** for H$_2$ in Europe and USA stretch for 3000 km
- much work still goes into steel development to reduce risk of hydrogen embrittlement further (steel and welds)
- **steel tanks** are also a solution for storing H$_2$ in FCV (type I \leq300 bars) and, today, for transporting H$_2$ on trucks (200-300 bars)
Bibliography
Bibliography (1)

Bibliography (3)

J.F. Monteiro, J.C.Waerenborgh, A.V.Kovalevsky, A.A.Yaremchenko, J.R.Frade, Synthesis of Sr0.9K0.1FeO3-d electrocatalysts by mechanical activation, Journal of Solid State Chemistry 198 (2013) 169–175
Cox, Derek J. Fray, Mechanistic investigation into the electrolytic formation of iron from iron(III) oxide in molten sodium hydroxide, J Appl Electrochem (2008) 38:1401–1407
E.M. Domingues, E.V. Tsipis, A.A. Yaremchenko, F.M. Figueiredo, J.C. Waerenborgh, A.V. Kovalevsky, J.R. Frade, Redox stability and electrical conductivity of Fe2.3Mg0.7O4±δ spinel prepared by mechanochemical activation, Journal of the European Ceramic Society 33 (2013) 1307–1315