Hydrogen Roadmap

Analytical approach of the supply side modelling

Uwe Remme

Low-carbon energy technology roadmaps

20/46

Supply-side modelling **ETP-TIMES**

ETP modelling framework

Regional structure of ETP-TIMES

- 28 model regions representing individual countries or aggregations of countries
- Only one geographic point per model region; differentiation within a single region, e.g. through different resource categories

Structure of supply side model (ETP-TIMES)

• Methodology developed by ETSAP (Energy Technology Systems Analysis Programme) implementing agreement of the IEA

Hydrogen supply options

Hydrogen supply costs in comparison to other fuels

Global hydrogen supply in the 2DS

Hydrogen may become an attractive storage option for surplus electricity from variable renewables by 2050

Energy storage

First hydrogen balloon flight by Jacques Charles and Nicolas Robert in Paris on 1 December, 1783.

The way electricity is produced changes in a 2DS

...but also electricity consumption changes

Systems thinking is needed

Storage technologies are different

Low-carbon energy technology roadmaps

© OECD/IEA 2013

Comparison of storage cycle costs: Daily operation

1 GW for 8h (8 GWh), 1 cycle per day

Source: VDE-Study: Energy storage in power supply systems with a high share of renewable energy sources

Comparison of storage cycle costs: Weekly operation

500 MW for 200h (100 GWh), 2 cycles per month

Energy storage analysis

- Enhanced ETP-TIMES model (long-term; horizon up to 2050):
 - 4h-load segments for a typical day (6 per day, four typical days per year)
 - Large-scale storage: electricity, thermal, hydrogen
 - Considering other flexibility options for the electricity system:
 - Flexible generation technologies
 - Inclusion of demand response, e.g. V2G

Investment decisions in generation technologies and first estimate on storage needs; better capturing impact of operational aspects on capacity needs

- Dedicated TIMES model for operational analysis (short-term; one year):
 - 1h-timeslice resolution
 - Analysing operation of electricity system within a year for specific region with investment decisions for generation technologies from long-term model
 - Additional operational constraints (ramp-up/-down, min load, min up/down times)
 Improved analysis on storage needs and role of competing flexibility options

Challenges of the H₂ analysis on the supply side

- Lack of complete information on captive (on-site) generation at refineries and chemical plants today
- **Development of H₂-related technologies** in terms of their technical and economic characteristics as well as scale
- H₂ infrastructure: spatial and scale aspects only covered to some degree in global ETP-TIMES model, possible approaches:
 - Expanding transport infrastructure model
 - Relying on existing national studies
- H₂ as flexibility option for the electricity sector:
 - Assessing synergies with storage needs for end-use consumption
 - Role of natural gas infrastructure (power-to-gas)
 - Competing options for flexibility (flexible generation, other storage technologies, demand response, larger balancing area)

Thank you!

Uwe Remme uwe.remme@iea.org

Example: Variability of wind

