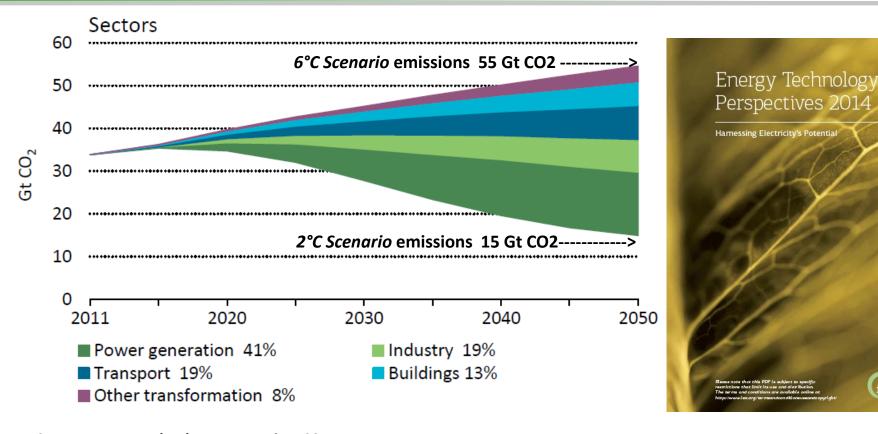


IEA Technology Roadmap on Hydrogen Asia Workshop

June 26-27 2014, Yamanashi Prefecture

Alex Körner

alexander.körner@iea.org


Content

- Objectives and role of the Hydrogen Roadmap
- Status of the Hydrogen Roadmap
- Roadmap outline: Scope vision structure
- Next steps

Climate change mitigation by sector

Source: Energy Technology Perspectives 2014

- Opportunities and challenges of hydrogen technologies in a 2°C world
- Actions to overcome key barriers to a widespread application of hydrogen technologies in the transport, industry and residential sector as well as on the energy supply side

Status of the Hydrogen Roadmap

- Kick-off meeting and Europe workshop July 9/10 2013 at IEA in Paris
- North America workshop January 28/29 2014 at HIA, Bethesda, Maryland
- Asia workshop June 26/27 2014 in Japan
- Carried out extensive literature review
- Reviewed data for transport input
- Sectoral analysis is underway
- Drafted preliminary milestones and key actions for discussion and review
- Drafting and review of the document Q3/4 2014
- Publication of the document Q1 2015

Outline of Hydrogen Roadmap

- Introduction
- Rationale for roadmap H2 in the energy system
 - Transport
 - Stationary applications
 - Energy storage
 - Synergies between energy sectors
- Technology status today
- Vision for deployment to 2050 Regional and global
- Technology development Actions and milestones
- Policy, regulation, financing: Actions and milestones

Rationale hydrogen

- Decarbonization of the energy system:
 - Transport sector: Increased demand for high energy density
 AND low carbon fuels creates demand for alternatives
 - Power sector: Increased demand for operational flexibility creates demand for energy storage and integrated systems
 - Stationary: Increased demand for highly efficient and integrated processes can foster the use of FC micro CHP systems in the residential sector and more efficient processes in the industry

Key features of Hydrogen

- Potentially low carbon
- Very flexible energy carrier which can be generated from almost all PE to a suite of useful end-use energies
- Can store energy
 - At large scale over long time Energy storage & variable renewable energy integration
 - At small capacities under restricted space and weight requirements - Transport
- Can be used as feedstock to reduce carbon footprint
- Hydrogen is used in large quantities already today

Key features of Hydrogen

- In the long term, hydrogen applications needs to built on:
 - The use of low carbon hydrogen
 - The need to store energy (either at larger quantities or in mobile applications)
 - The need to use hydrogen as a feedstock
- In the short term, existing infrastructure to generate and distribute hydrogen will have to play a great role to create hydrogen demand markets

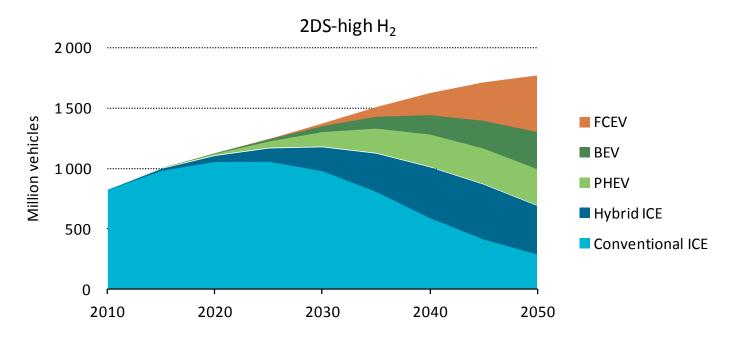
Technology status today

- Discussion of key technology components
 - Electrolyzers, fuel cells and storage technology
- Discussion of demand side technologies
 - Fuel cell vehicles
 - Niche applications
 - Fork lifts, UPS
 - Japan specific discussion on micro fuel cell CHP
- Hydrogen distribution, transmission and retail infrastructure
 - Transmission technology Gaseous and liquefied trucking, pipelines
 - Hydrogen refueling stations

Technology status today

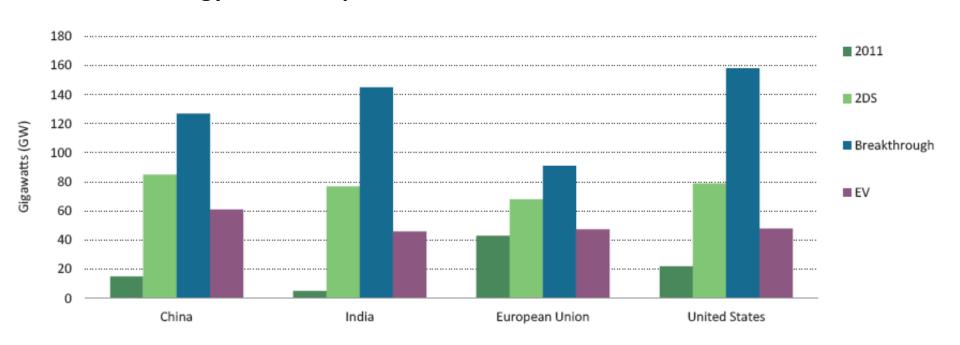
- Hydrogen based flexibility options for the power sector
 - Power to power
 - Power to gas (HENG)
 - Power to fuel
- Efficient steel making process
 - Blast furnace top-gas recovery with H2 separation and reinjection

Regional focus



- Detailed analysis will focus on the following regions
 - EU 4 France, Germany, Italy, UK
 - USA
 - Japan
- Based on the regional results some global impacts will be quantified
 - E.g. CO₂ emission reduction potential of FCEVs in road transport
 - Emission reduction potential in the steel sector

Vision – Transport


- What if 25% of all PLDVs are FCEVs by 2050?
 - Vehicle sales and ramp-up rates
 - Discussion of fuel use and emission reduction potential
 - Costs and benefits
 - Focus: Infrastructure requirements and costs

Vision – Hydrogen electricity storage

- What if large scale hydrogen electricity storage can get competitive?
 - Estimation of storage potentials in high variable renewable energy integration scenario (ETP 2014 2DS)
 - What costs/efficiencies needs to be reached for H2 electricity storage technology to be competitive

Technology scope: Steel industry

- Focus on how to improve the process rather than using hydrogen directly as an energy carrier
- Example: Blast furnace top gas recovery with H2 separation and re-injection
 - Process allows to reduce coke demand and reduce emissions
 - Assessments on cost of implementation
 - Assessments on necessary CO2 price

Next steps

- Finalizing analysis for energy storage and energy integration
- Collection of case studies for several H2 projects
 - Integrated energy storage and transportation project
 - Case study power-to-gas
 - Case study electrolyser and control power market
 - Case study fuel cell micro CHP (Japan)
- Further developing analysis for industry
- Drafting of milestones and key actions (additional WS?)
- Drafting of the document
- Circulation of the document for review Q4 2014
- Publishing the roadmap Q1 2015

Thanks!