

Hydrogen Infrastructure Analysis in Early Markets of FCEVs

Amgad Elgowainy Argonne National Laboratory

IEA Hydrogen Roadmap- North America Workshop Bethesda, Maryland

January 28-29, 2014

Regulations drive deployment of FCEVs

California requires automobile OEMs to achieve specific sales volume of zero emissions vehicles (ZEVs). Others states are following suit.

	Category	Vehicle Acronym	Vehicle Examples		
	Gold	ZEV	hydrogen fuel cell electric (FCEV), battery electric vehicles (BEV)		
	Silver+	Enhanced AT-PZEV*	Plug-in hybrids or hydrogen-ICE		
	Silver	AT-PZEV	Hybrid, compressed natural gas		
	Bronze	PZEV	Extremely clean conventional vehicle		

*Advanced Technology Partial Zero Emissions Vehicle

ZEV Type	Definition	Example	Credits (2009-2017)
Туре І	50-75 mile Electric Range (ER)	Limited Range BEV	2
Type I.5	75-100 mile ER	City Electric Vehicle	2.5
Type II	100-200 mile ER	Full function BEV	3
Type III	200 mile ER, or 100+ER with fast refueling	FCEV or BEV	4
Type IV	200+ mile ER with fast refueling	FCEV	5
Туре V	300+ mile ER with fast refueling	FCEV	7

http://arbis.arb.ca.gov/msprog/zevprog/factsheets/2008zevfacts.pdf

Refueling stations rollout faces several major challenges in early markets

- □ High capital investment at low manufacture volume of components
- Underutilization of the capital in early markets
- \Box High investment risk \rightarrow requires high rate of return

Refueling station underutilization poses significant burden on refueling cost in early markets

• Initial HRS network density is needed before FCEV deployment (e.g., 68 stations in California by 2015)

 \rightarrow Major underutilization of initial network

- The next biggest question for HRS underutilization is vehicle ramp rate?
 - ➢ For slow FCEV ramp rate → long period of underutilization
 → build small HRS (loses benefits of economies of scale)
 - ➢ For fast FCEV ramp rate → short period of underutilization
 → build large HRS (benefits from economies of scale)
- But the vehicle ramp rate is very uncertain for many reasons, including customer acceptance

Thus, HRS roll out initiatives with public support are needed to overcome challenges of early markets

Market Phase	Public Support?	HRS Profitable?	HRS Reliable?	HRS Sustainable?
[1] Demonstration	Yes	No	No	No
[2] Early/ Precommercial	Yes	Yes	No	Pseudo Sustainable
[3] Commercial	No	Yes	Yes	Self Sustainable

Pipeline delivery is not a likely option for the demand levels in early markets

Liquid vs. gaseous delivery: Each has unique advantages

Station footprint impact on cost of H2 could be significant

IEA-HIA Task 28 Evaluation of H2 delivery concepts

HRS size Distribution option	e Very small ≤ 80 kg/day	Small ~ 200 kg/day	Medium ~ 400 kg day	Large ~1000 kg/day	Very large ≥ 1000 kg/day	
On-site electrolysis	On-site power requirement may become an issue: 400 kg/day ≈ 1 MW					
On-site reforming	Difficult to c	Difficult to capture CO ₂ Required footprint for production facility is an issue				
CGH2 truck	Delivery of 300 kg up to potential maximum of 1000 kg per truck					
LH2 truck	Relatively large boil-off for demand levels in early markets					
CGH2 pipeline	Due to high investments pipelines are not likely in early markets unless already available					
Color coding:	Very likely		Possible		Less likely	

- Differences in general applicability based on main differentiating characteristics, or the most demanding or challenging requirements
- Examples: CAPEX, amount of hydrogen load per delivery, footprint (setback distances), CO₂ emissions, ...

Thank you!

aelgowainy@anl.gov

