Bethesda
January 28-29, 2014
IEA Hydrogen Roadmap
North America Workshop

Topic: Hydrogen Safety and RCS SoA, Expectations and Requirements

Andrei V. Tchouvelev
Evidence-based and Risk-informed RCS

SoA: *Evidence-based and risk-informed RCS for commercial deployment of HFC technologies!*

- Since 2003 applied significant joint effort via IEA HIA Task 19/31, H$_2$CAN and HySafe to:
 - Close most knowledge gaps on hydrogen behaviour:
 - Unintended releases, physical effects, materials compatibility, flammability, hazard analysis, QRA.
- Developed first science-based and risk-informed H$_2$ national codes for pre-commercial deployment:
 - USA – NFPA 55 (2008) \rightarrow NFPA 2
 - Canada – CHIC (2007) \rightarrow 2nd edition in 2014
- Laid solid foundation for world-wide development of evidence-based (science and best practices) and risk-informed RCS for commercial applications NOW!
H₂ Safety and RCS Web NA Viewpoint

Next 3-5 years is the most critical time for RCS development and closing remaining safety knowledge gaps!
Pathway to Harmonization (1)

Old Paradigm: *Think globally, act locally*

- **Implications for local / regional jurisdictions:**
 - Referencing international standards (ISO and IEC) for installation / model codes:
 - **Example:** Canadian Hydrogen Installation Code (CHIC) references ISO standards for electrolysis, reformers, storage, and other components, and IEC standard for classification of hazardous areas (ISO/TC 197, TC58, IEC/TC 31, TC 105)
 - Affected standards: NFPA 2 and relevant NFPA and ICC fire and other codes & standards
 - Developing certification programs for “listed components” to international component standards (ISO and IEC)
 - Wishful thinking: UL, CSA Group and BNQ establish a joint trans-NA certification program
New Paradigm: **Replace H_2-focused tunnel vision with broad area coverage (all-of-the-above approach)**

- **Implications for H_2 safety and RCS in general:**
 - Pay more attention to overlap / blending of hydrogen with other energy options, carriers, fuels:
 - Expand hydrogen C&S to include co-location with other fuels dispensing – green field H_2 fueling cannot be sustainable long term.
 - Develop proper requirements for HCNG blends – there are still safety and knowledge gaps
 - Expand hydrogen C&S to adequately address promising niche market applications like materials handling, mining, power-to-gas, energy storage, smart grids