Bringing Hydrogen Fuel Cell Electric Vehicles to the Golden State

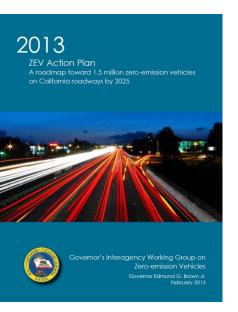
A California Roadmap

The cars are coming (buses, too)

Hydrogen Stations in California

Open Today:

- Burbank
- Emeryville
- Fountain Valley
- Harbor City
- Irvine #1
- Newport Beach
- Thousand Palms
- Torrance
- West LA #1


In Development:

- Beverly Hills
- Diamond Bar (upgrade)
- Hawthorne
- Hermosa Beach
- Irvine #2
- Los Angeles CSULA
- San Juan Capistrano
- Santa Monica
- West LA #2
- West Sacramento
- Westwood UCLA
- Anaheim
- Chino
- Cupertino
- Foster City
- Mission Viejo
- Mountain View
- Woodland Hills (LA)

California ZEV Action Plan

- By 2015: California major metropolitan areas "ZEVready" with infrastructure and streamlined permitting
- By 2020: California ZEV infrastructure can support up to 1 million vehicles
 - Including widespread use of ZEVs for freight and public transit
- By 2025: Over 1.5 million ZEVs in California

Stations must come first

- 68 stations provide coverage to enable market launch
 - Supports customer convenient fueling in early markets
 - Enables travel throughout early market regions and state

Windoor Sarta Rosa

Fairfield
Vallejo
San Francisco
San Francisco
San Francisco
San Francisco
San Francisco
San Francisco
San Jose
Advantar
Wastonville
Salinas
Solledad

Wolfey
Valley
Valley
Valley
Valley
Valley
Solledad

Monterey

Salinas
Solledad

Kan City

Wastonville
Salinas
Solledad

Kan City

Attacker

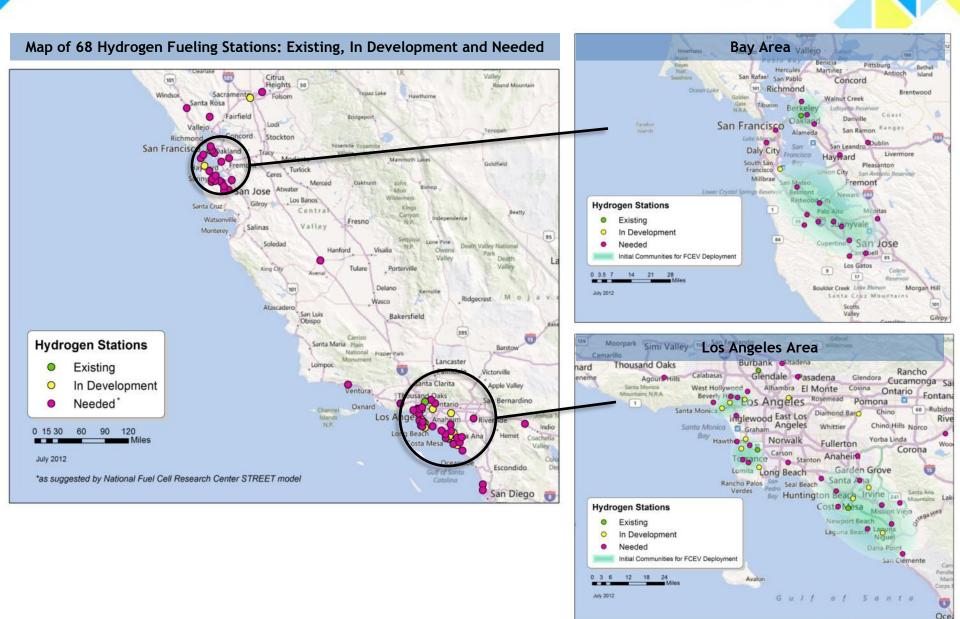
Solledad

Attacker

Solled

Map of 68 Hydrogen Fueling Stations: Existing, In Development and Needed

Five clusters to launch market


- Santa Monica and West Los Angeles
- Torrance and nearby coastal cities
- Southern coastal area of Orange County
- Berkeley
- South San Francisco Bay area

Locations based on:

- Demographic information
- Individual OEM market assessments
- California Energy Commission/Air Resources Board Vehicle Survey
- Hybrid and alt fuel vehicles registrations
- Geographic distribution of Clean Vehicle Rebate Program

1.6 Million HH in CA with income > \$150,000/year 50% are within 6 minutes of 70 stations

Building a statewide network

Access to stations

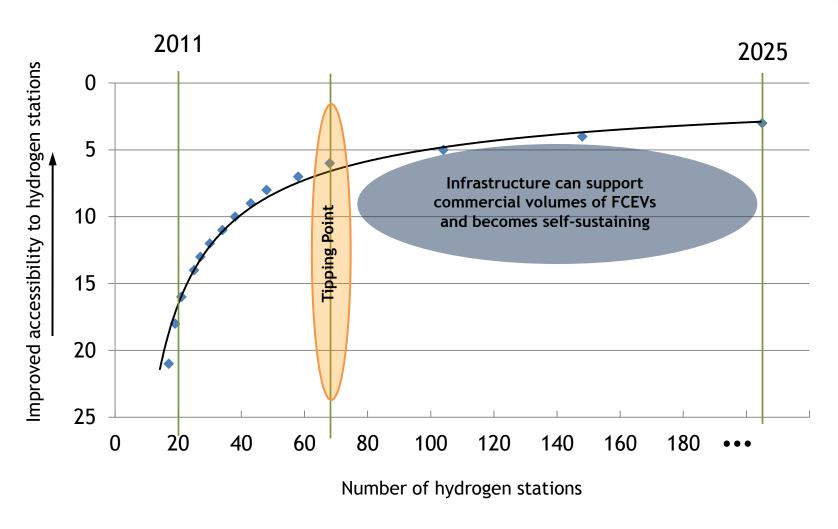
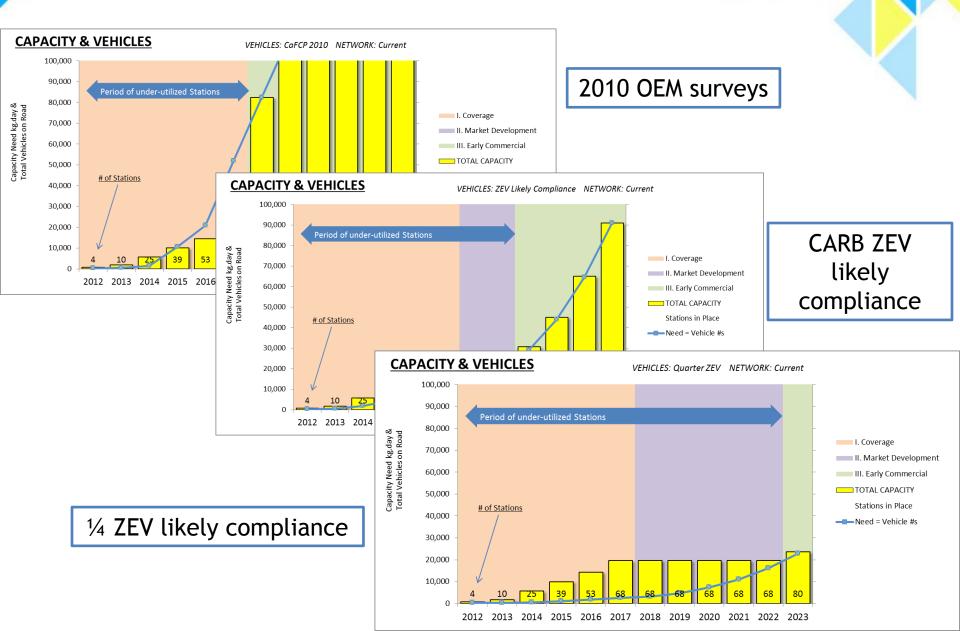



Chart courtesy of National Fuel Cell Research Center at UC Irvine

H₂NIP: FCEV deployment scenarios

Better for Consumer

IRR of a 2015 Core Market: 500-DH2 Station

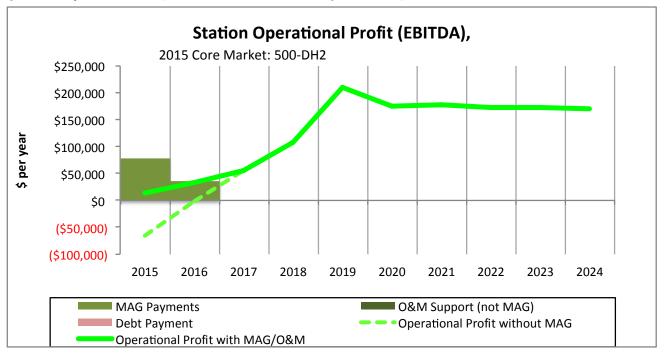
Vehicle Sale: / Likely Compliance

Better for Station Provider

Private

Govt. (65%)

Cost Share

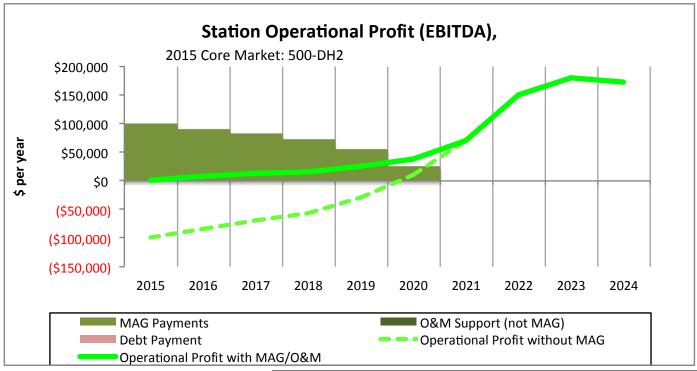

	Venicie Sale: / Likely Complic						nce			
				If long te	rm Hydrogen Re	etail Price				
		\$8.00	\$8.50	\$9.00	\$9.50	\$10.00	\$10.50	\$11.00	\$11.50	\$12.00
	\$1,000k	-2.7%	11.4%	21.0%	28.8%	36.0%	43.0%	49.9%	56.7%	63.4%
	\$1,100k	-3.8%	10.1%	19.5%	26.9%	33.7%	40.2%	46.6%	53.0%	59.1%
	\$1,200k	-4.9%	9.0%	18.0%	25.2%	31.7%	37.8%	43.7%	49.7%	55.5%
Capital Expense of Station	\$1,300k	-5.8%	7.7%	16.7%	23.7%	29.9%	35.6%	41.3%	46.8%	52.4%
	\$1,400k	-6.7%	6.5%	15.5%	22.3%	28.2%	33.8%	39.1%	44.4%	49.6%
	\$1,500k	-7.6%	5.4%	14.3%	21.1%	26.8%	32.1%	37.1%	42.1%	47.1%
	\$1,600k	-8.3%	4.4%	13.3%	19.9%	25.4%	30.6%	35.4%	40.2%	44.9%
	\$1,700k	-9.1%	3.4%	12.3%	18.8%	24.2%	29.2%	33.8%	38.4%	42.8%
	\$1,800k	-9.7%	2.5%	11.4%	17.8%	23.1%	27.9%	32.4%	36.7%	41.0%
	\$1,900k	-10.4%	1.7%	10.4%	16.9%	22.1%	26.7%	31.1%	35.2%	39.3%
		-11.0%	0.9%	9.5%	15.9%	21.1%	25.6%	29.9%	33.9%	37.8%
	\$2,100k	-11.5%	0.1%	8.6%	15.1%	20.2%	24.6%	28.7%	32.6%	36.4%
	\$2,200k	-12.1%	-0.6%	7.7%	14.3%	19.3%	23.6%	27.6%	31.5%	35.1%
	\$2,300k	-12.6%	-1.3%	6.9%	13.5%	18.5%	22.7%	26.6%	30.4%	33.9%
	\$2,400k	-13.1%	-1.9%	6.2%	12.7%	17.7%	21.9%	25.7%	29.3%	32.8%

*Market Assurance Grants not included

Appropriate Cost-Share Depends on Many Factors

H₂NIP: Important to cover O&M

ZEV likely compliance (10,500 FCEVs by 2017):



		Public Funds					
	IRR	Capex Grant	MAG Grant	O&M Grant	Total Grant	Capex	TOTAL COST
No Incentive	-7.9%	0	0	0	-	\$2,000k	\$2,000k
Capital Grant	9.5%	\$1,300k	-	-	\$1,300k	\$700k	\$2,000k
Capital Grant + MAG or O&M	12.8%	\$1,300k	\$114k	-	\$1,414k	\$700k	\$2,114k

Core market, 500 kg/day station, \$2M station (65% cost share), \$9/kg H2 (\$5.50 wholesale) - \$2.18 net margin

H₂NIP: Market assurance grants

1/4 ZEV Likely Compliance (2,625 FCEVs by 2017):

		Public Funds	ublic Funds				
	IRR	Capex Grant	MAG Grant	O&M Grant	Total Grant	Capex	TOTAL COST
No Incentive	-16.6%	0	0	0	-	\$2,000k	\$2,000k
Capital Grant	-7.2%	\$1,300k	-	-	\$1,300k	\$700k	\$2,000k
Capital Grant + MAG or O&M	0.1%	\$1,300k	\$427k	-	\$1,727k	\$700k	\$2,427k

Core market, 500 kg/day station, \$2M station (65% cost share), \$9/kg H2 (\$5.50 wholesale) - \$2.18 net margin

H₂NIP: Incentives vary by market

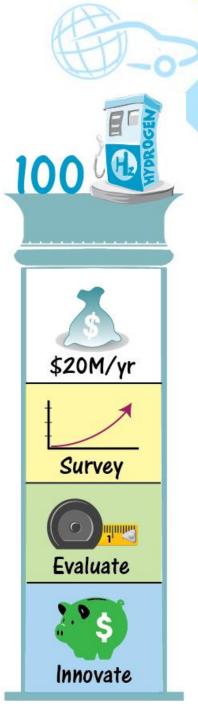
Increasing incentive required per station

CORE

Large station, many customers

EMERGING

Large station, fewer customers


CONNECTOR

Small station, few customers

Decreasing number of stations

H2 station funding

- AB 8 signed into law by Gov. Brown
 - Extends funding for important air quality and alternative fuel programs
 - Guarantees \$20M annually through 2023 to achieve 100 hydrogen stations in California
 - Annual survey, evaluation and reporting
 - Removes Clean Fuels Outlet regulation
- H₂ funding provision increases certainty that stations will be in place to support early market FCEVs
- Diverse stakeholder groups supported the bill

Fuel cell electric buses in California

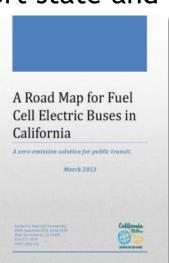
See http://www.nrel.gov/hydrogen/proj_fc_bus_eval.html for NREL fuel cell bus evaluation reports

Fuel cell bus roadmap

Goal

Move FCEB deployment and manufacturing from precommercial (2012-2015) to early commercial (2016-2017)

Major objectives


- » Create two Centers of Excellence
 - One in Northern and one in Southern California
- » Achieve DOE/DOT 2016 FCEB targets

Provide information to support state and federal decision

making

AC Transit fueling station (Photo courtesy of L. Eudy, NREL)

Fuel cell bus roadmap goal

NREL Technology Readiness Levels for FCEB Commercialization

Technology Readiness Level	Description (abbrev.)					
TRL 9	Technology in its final form. Fully commercial products.					
TRL 8	Last step in true system development (50-100 buses/location)					
TRL 7	Full-scale demonstration and reliability testing (5-10 buses/location)					
TRL 6	First tests of prototype buses in actual transit service (1-2 buses/location)					
TRL 1-5	R&D → lab scale testing & early prototype/mule					

A step change in the FCEB market from the current pre-commercial phase of deployment and manufacturing to the early commercial phase

Table 1. Performance, cost, and durability targets for fuel cell transit buses.

			· · · · · · · · · · · · · · · · · · ·	
	Units	2012 Status	2016 Target	Ultimate Target
Bus Lifetime	years/miles	5/100,000 ¹	12/500,000	12/500,000
Power Plant Lifetime ^{2,3}	hours	12,000	18,000	25,000
Bus Availability	%	60	85	90
Fuel Fills ⁴	per day	1	1 (< 10 min)	1 (< 10 min)
Bus Cost ⁵	\$	2,000,000	1,000,000	600,000
Power Plant Cost ^{2,5}	\$	700,000	450,000	200,000
Hydrogen Storage Cost	\$	100,000	75,000	50,000
Road Call Frequency (Bus/Fuel Cell System)	miles between road calls	2,500/10,000	3,500/15,000	4,000/20,000
Operation Time	hours per day/days per week	19/7	20/7	20/7
Scheduled and Unscheduled Maintenance Cost ⁶	\$/mile	1.20	0.75	0.40
Range	miles	270	300	300
Fuel Economy	miles per gallon diesel equivalent	7 .	8	. 8

TRL 7

TRL 8

TRL 9

Members

Air Liquide Air Products Alameda-Contra Costa Transit District (AC Transit) Automotive Fuel Cell Cooperation **Ballard Power Systems** Bay Area Air Quality Management District California Air Resources Board California Department of Food and Agriculture California Energy Commission California State University - Los Angeles CALSTART The Center for Energy Efficiency and Renewable Technologies (CEERT) Center for Transportation and the Environment (CTE) Chrysler **Daimler Energy Independence Now** General Motors

Honda **Hydrogenics** Hyundai Institute of Transportation Studies, UC Davis Linde North America, Inc. National Fuel Cell Research Center, UC Irvine National Renewable Energy Laboratory (NREL) Nissan Powertech Labs Proton OnSite Sandia National Laboratories South Coast Air Quality Management District Southern California Gas Company SunLine Transit Agency Toyota U.S. Department of Energy U.S. Environmental Protection Agency **US** Hybrid University of California, Berkeley Volkswagen