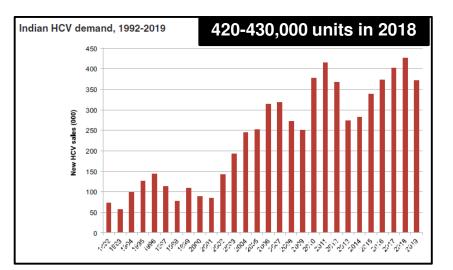
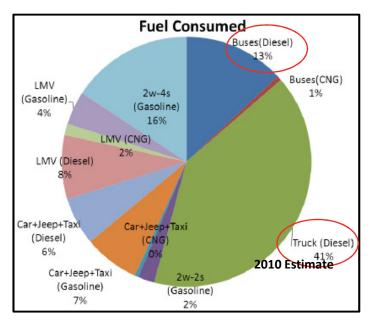
## Heavy Duty Vehicles-Engine fuel efficiency and emissions technologies for India

R

Dr. Anuradda Ganesh Director, Advance Engineering Cummins Technologies India Limited




### Outline


- Importance of the Heavy Duty Transportation Sector
- Technology Opportunities—USA SuperTruck Program
- Heavy Duty Vehicle Technologies for India
- Socio-Economic Factors
- Recommended Technology Scenario for India
- Summary



#### Importance of HD Transportation in India

- Heavy Duty Transportation Sector accounts for ~ 55% of total energy consumption
- The sector accounts for following transportation needs nationally
  - 60% of total freight movement
  - 80% of total people movement





*Source-http://*shaktifoundation.in/wpcontent/uploads/2014/02/Developing-pathways-for-fuelefficiency-improvements-in-HDV-sector-in-India.pdf

 One of the growing sector in India with a projected CAGR of 10.3% from 2014-18 → Critical from environment- energy security perspective

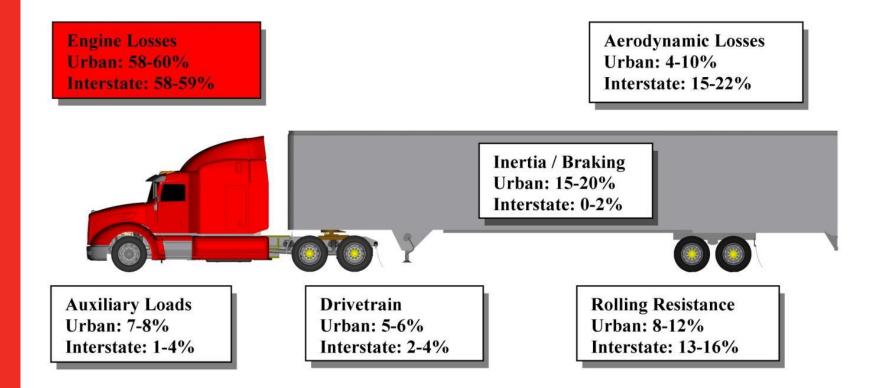


#### What Does the Customer Want: Now and Future?



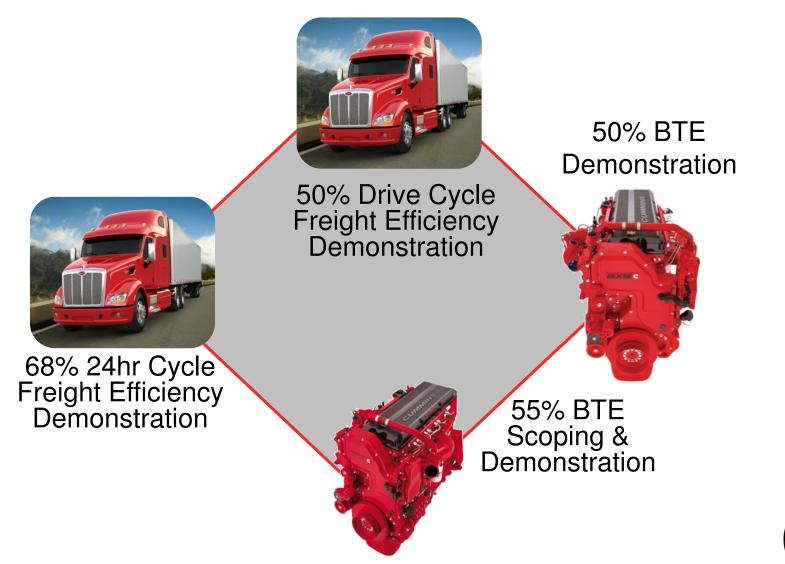
#### FIT FOR MARKET (FFM) Themes

Prioritized customer requirement (Current View)



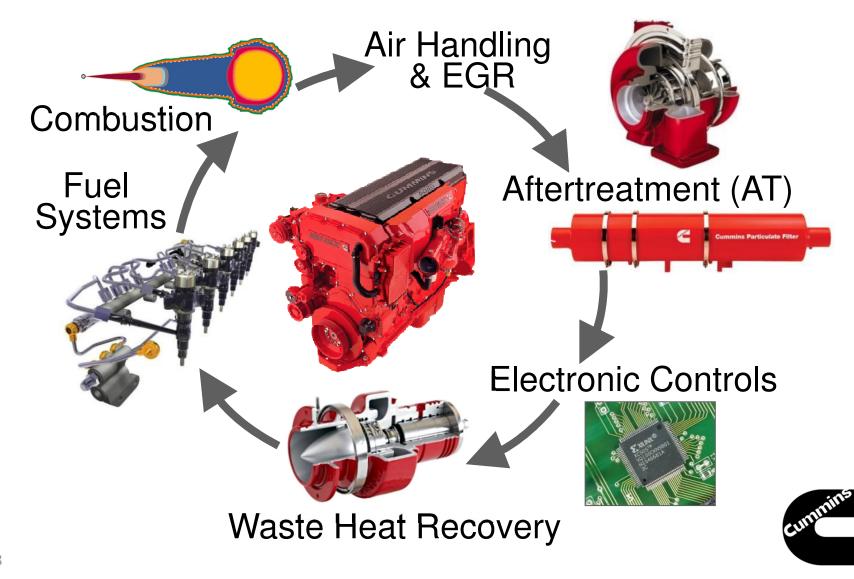

#### Total Cost of Ownership (TCO)

- Total cost of ownership (TCO)- a key consideration of current and future Indian consumer; Consists of product initial cost and operational cost
- Fuel cost accounts for up to 50% of total operational cost for a typical fleet owner → Significant constituent of total cost of ownership is product efficiency
- Technologies developed globally can be applied in India to leapfrog to high efficiency vehicles

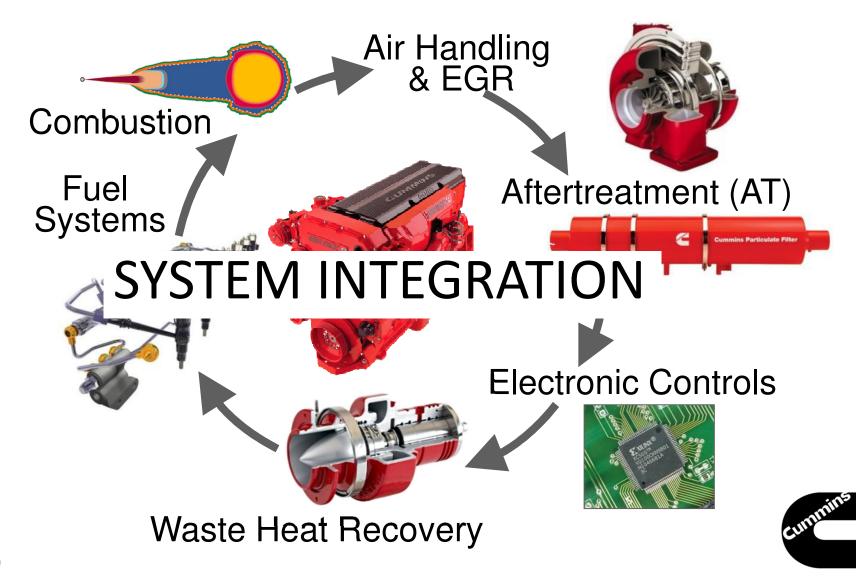



#### Super Truck Exploratory Research Program for Demonstrating Breakthrough Technology

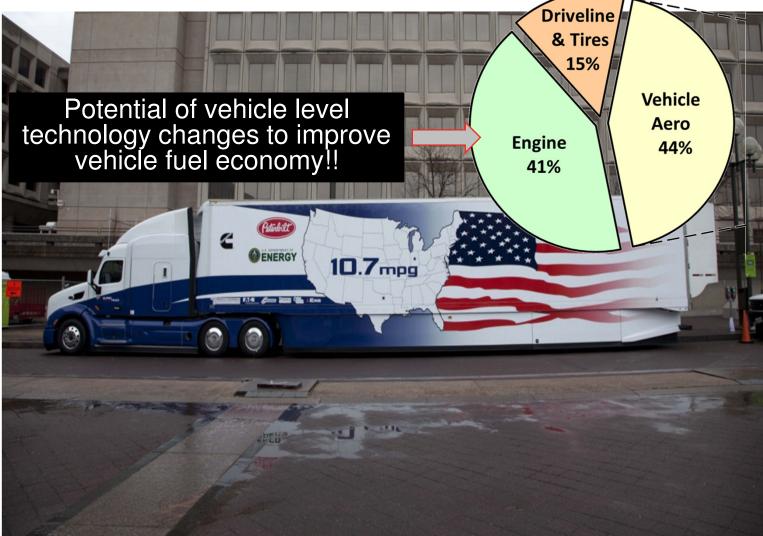





#### U.S. SuperTruck Program



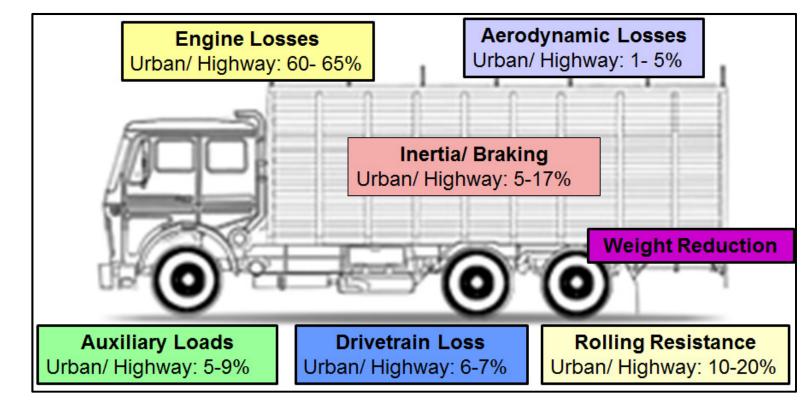




#### **Cummins Component Technologies Integration**



#### **Cummins Component Technologies Integration**




# Contribution in Vehicle Fuel Economy Improvements from Different Buckets



This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy Department today. | Photo by **Sarah Gerrity**, Energy Department



### Typical Energy Balance for India HD Application



- Need to analyze typical drive cycle for desired application (Bus-Truck/ Highway- City)
- Appropriate technologies (Globally developed/ Indigenous) can then be chosen based on environmental factors and customer requirements
  - Infrastructure Availability, Payback period demand a Fit For Market (FFM) approach while selecting and adopting technologies to India context (typically18 months)



# Technology Focus Areas for Commercial Vehicles for India

| Hybrid Power                      | Vehicle/Powertrain<br>Technologies                                                             | Vehicle Connectivity &<br>Smart Controls                                                                                                                                                                                                |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mild Hybrid                       | Low Resistance Tires                                                                           | Telematics                                                                                                                                                                                                                              |  |  |  |
| Thermal Management                | Simple Wiring Harness                                                                          | Smart Human Machine<br>Interface                                                                                                                                                                                                        |  |  |  |
| Lower Cost Batteries              | Automatic<br>Transmission/AMT                                                                  | Virtual Technicians                                                                                                                                                                                                                     |  |  |  |
| Lower Cost Electrical<br>Machines | Advanced Axels                                                                                 | Smart Controls (Driver<br>and Vehicle based)                                                                                                                                                                                            |  |  |  |
| Low Cost Power<br>Electronics     | Light Weight                                                                                   | GIS                                                                                                                                                                                                                                     |  |  |  |
| Super Capacitors                  |                                                                                                |                                                                                                                                                                                                                                         |  |  |  |
| Scope                             | Vehicle                                                                                        | e Scope                                                                                                                                                                                                                                 |  |  |  |
|                                   | Mild Hybrid<br>Thermal Management<br>Lower Cost Batteries<br>Lower Cost Electrical<br>Machines | Hyorid PowerTechnologiesMild HybridLow Resistance TiresThermal ManagementSimple Wiring HarnessLower Cost BatteriesAutomatic<br>Transmission/AMTLower Cost Electrical<br>MachinesAdvanced AxelsLow Cost Power<br>ElectronicsLight Weight |  |  |  |

#### Socio-Economic Drivers

#### Emissions Regulation

| INDIA - AUTOMOTIVE APPLICATION<br>Applicable for Heavy Duty Commercial Diesel vehicles above 3500 kg GVW |                                  |      |                                                                                                                           |      |      |      |      |      |                   |      |      |      |                    |                   |      |      |      |
|----------------------------------------------------------------------------------------------------------|----------------------------------|------|---------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|-------------------|------|------|------|--------------------|-------------------|------|------|------|
|                                                                                                          | 2009                             | 2010 | 2011                                                                                                                      | 2012 | 2013 | 2014 | 2015 | 2016 | 2017              | 2018 | 2019 | 2020 | 2021               | 2022              | 2023 | 2024 | 2025 |
| For select cities***                                                                                     | BS III :<br>5.0 / 0.6<br>/ 2.1 / | 6    | BS IV : (ESC) 3.5 / 0.46 / 1.5 / 0.02**<br>(ETC) 3.5 / 0.55* / 4.0 / 0.02**<br>OBD Stage II effective from 1st April 2013 |      |      |      |      |      |                   |      |      |      | BS V Countrywide B |                   |      |      |      |
| Rest of India                                                                                            | BS II :<br>1.1<br>4.0 / 0.       | /    | BS III: 5.0 / 0.66 / 2.1 / 0.10**                                                                                         |      |      |      |      | E    | BS IV Countrywide |      |      |      |                    | Similar to Euro-V |      |      |      |

- Fuel Economy Standards for HD Vehicles?

#### Infrastructure

 Roads; Urea Availability; Internet Connectivity; Fuel Availability



#### Recommendations

- For HD Transportation industry
  - Engine technologies are available to significantly improve fuel efficiency and while reducing tailpipe emissions
  - Appropriate technologies for India need to be identified considering India context and cost effectiveness
  - Opportunity to leap frog current architectures by taking advantage of India technology accelerators
- For end customer
  - Technology spectrum is rich and diverse; Choice dependent on acceptable payback expectations
  - Demand clean, high efficiency, top performance, smart products from the industry suppliers
- For policy makers
  - Synchronize legislative requirements (emission, GHG, road safety) with infrastructure availability to improve deployment of technologies and improve fuel availability with clear enforcement policies.
  - Engine fuel efficiency regulation may be introduced from ease of implementation and real life greenhouse gases reduction
  - Long term- strategic thinking needed to address issues such as traffic management, increasing penetration of public transport, leveraging non-motorized transport, improving roads etc.
  - Significant R&D investment needed for cost effective implementation of technologies
- For industry- government liaisons (such as ARAI, PCRA, BEE, etc)
  - Partner with government and industry in developing and deploying regulations
  - Focus on test methods, cycles and conditions (vehicle, engine) ensuring transparency between test conditions and real life road conditions
- 14 Collaborate with Industry- Government- Universities for development of technologies

#### Summary

- Engine technologies that can deliver significant improvements in fuel efficiency and reduced tailpipe emissions are available
  - Easier control and regulate "In Field" green house gas emissions through engine level regulations
  - Such engine level regulations also ensure reduction in criterion pollutant and green house gases together thereby improving overall environmental well-being
- In choosing the right technology, key market themes in India are Fuel Efficiency, Reliability/Durability, Low Maintenance, and Low Initial Cost
- Fuel Efficiency Improvements will likely be driven by TCO and CO2 emissions considerations
- The development of the Indian infrastructure and Emissions Regulations will have a major impact on technology selection
- There is a strong need for all key players (Manufacturers, End Customers, Policy Makers, Test Agencies, Liaisons, Research Universities/ Labs) to work together to select and develop right Fit for India Technologies
- There is an opportunity to leap frog current proposed architectures by taking advantage of India technology accelerators

