PCRA/IEA - Workshop on Heavy-Duty Fuel Efficiency Regulations

The OEM view for India

Dr. Manfred Schuckert Daimler – Automotive Regulatory Strategy Head of Commercial Vehicles Emissions & Safety

PCRA/IEA - Workshop New Delhi - April 29th , 2015

1

HDV sector is a strongly cost-driven market

Fuel costs is the major driver in total cost of ownership (TCO) also in India

#1 Fuel cost: fuel price strongly influences cost of truck operation

Source: http://www.mypetrolprice.com/diesel-price-chart.aspx

Rising oil and fuel prices and decreasing subsidies will result in even higher share of fuel cost within TCO

- OEM are heavily motivated to address vehicles' fuel consumption, as it is becoming more and more very important for customers
 - When diesel prices come back to former levels, they will play an even more important role.

Effective regulation must strengthen market forces

Customer's perspective is the key for real life improvements

#2 Vehicle operation: Knowledge of market, fleets and vehicle operation

Precondition for further emission reduction.

- Transparency and comparability of fuel consumption required
- Declaration of real-world Fuel Economy (FE) values
- Effective regulations need to be technologically neutral

Aspects to be considered

Vehicles:

- Operation
- Specific application depending on weight classes
- Use profiles (typical operation cycles)

Operators:

- Typical transportation companies
- · Holding periods of vehicles
- Procurement of new/used vehicles?

Regulative framework should consider specific market conditions and real-world operations of haulers.

Experiences from other markets

Upcoming changes of Indian economy to be considered Transportation performance need to meet growing demands

#3 Market frame conditions: Population demands are growing together with economy

Transportation demands

 Economic growth goes in line with changing consumer behavior and demands of population

Increasing and changing material flow and transportation of goods

Requirements to infrastructure

- Today's road conditions result in low capacity of road network
- Has to improve together with vehicle transportation performance

 Increase in transportation performance and average speed: improved emissions

- Growth of Indian's Economy will change needs and behavior of population.
- To meet future needs, truck market and road freight transport will change clearly.

Transport Efficiency – backbone of developed countries

The World Bank Logistics Performance Index (LPI) – India placed on 54

Basis and categories of the ranking

LPI:

- ... assesses the performance of countries
- ... is **based on a worldwide survey** of multinational freight forwarders and main express carriers (scale 1-5)
- ... is an equally weighted average of six components
 - 1. Customs: Efficiency of customs and border management clearance
 - 2. Infrastructure: Quality of trade and transport infrastructure
 - **3. Ease of arranging shipments:** Ease of arranging competitively priced shipments *relevant for CO₂ regulations*
 - 4. **Quality of logistics services:** Competence and quality of logistics services-trucking, forwarding, and customs brokerage
 - 5. Tracking and tracing: Ability to track and trace consignments
 - Timeliness: Frequency with which shipments reach consignees within scheduled or expected delivery timeselevant for CO₂ regulations

Country	Year	LPI Rank	LPI Score	International shipments	Тор
Germany	2014	1	4.12	3.74	
Vetherlands	2014	2	4.05	3.64	
Belgium	2014	3	4.04	3.80	
Jnited Kingdom	2014	4	4.01	3.63	
Singapore	2014	5	4.00	3.70	(C)
Sweden	2014	6	3.96	3.76	(j))
lorway	2014	7	3.96	3.42	0
uxembourg	2014	8	3.95	3.82	
Inited States	2014	9	3.92	3.45	
apan	2014	10	3.91	3.52	•
reland	2014	11	3.87	3.44	
anada	2014	12	3.86	3.46	
rance	2014	13	3.85	3.68	
vitzerland	2014	14	3.84	3.58	
ong Kong,	2014	15	3.83	3.58	
alaysia	2014		3.59		
ortugal	2014	26	3.56	3.43	
nited Arab mirates	2014	27	3.54	3.20	
hina	2014	28	3.53	3.50	•2
atar	2014	29	3.52	3.55	
irkey	2014	30	3.50	3.18	
oland	2014	31	3.49	3.46	
ech			° 49	3.59	
alta	2014	51	3.11		
hrain	2014	52	3.08		
lonesia	2014	53	3.08	2.87	
dia	2014	54	3.08	2.72	
roatia	2014	55	3.05	2.95	
uwait	2014	56	3.01	2.69	
hilippines	2014	57	3.00	3.00	
vorus	2014	58	3.00	2.88	
				-	

Ranking in 2014

• World Bank ranking confirms Europe highest logistic efficiency at competitive cost: Seven European countries under top ten – without any CO2-regulation for HDV

source: http://lpi.worldbank.org/international/global

Transport performance – each market is different

Contribution of vehicle fleet and usage of vehicles need to be known

#4 Segmentation CV fleet: Specific mileage and fuel consumption decisive for segment cycles

• In-depth knowledge about vehicle fleet and vehicle operation is a precondition to find out most effective measures to reduce fuel demand.

HDV need a different CO₂ approach than pass. cars Variety of vehicle types and missions is tremendously higher

Passenger cars: Entire vehicles

Today:

Measuring fuel consumption/ CO₂ emissions on roller test bench

- Metrics in g CO₂/km
- Mercedes-Benz with some hundreds variants

- Parameters: weight, driving resistances
- **NEDC:** One driving cycle for pollutants **and** CO₂

Trucks: Entire vehicles* and incomplete vehicles

Today:

- Emissions are measured on an engine test bench
- Widely diverse vehicle, wide range of GVW, built for resp. market
- Market specific metrics: .
 - $g CO_2/t km$ $g CO_2/t$ mile km/l Diesel I Diesel/km
- Use **specific** driving cycles:

500 variants of Mercedes-**Benz Trucks**

e.g. tractor, tipper

- CO₂ emissions of trucks highly depend on design, use case and driving cycles.
- Any regulation must reflect these high variety to guarantee customer's needs.

Addressing real world fuel consumption of a specific vehicle must be the aim of every cost-effective FC HDV regulation

Full vehicle approach (including spec. engine and trailer)

Simulation tools allowing for flexible OEM input

Fuel consumption test procedures affordable but robust

Standardization

Mission specific

vehicle segmentation and simulation

Market specific test cycles incl. slope

• Simulation procedures should be defined in a way that real life fuel consumption and all (at leat major) reduction technologies are reflected cost-effectively

Overview on possible CO₂/fuel economy test methods

Approaches for Heavy Duty commercial vehicles

Characteristics and evaluation of test methods

• Component testing with simulation of FE values is complex but most cost effective method, is repeatable, and can generate real-world FE values on a comparable basis.

2

GHG/FE test methods in place / planned

An overview

- EU approach is recommended: Simulated FE values match real-world consumption
- No expensive measurement method for each vehicle or type is needed.

2

Effectiveness of different classification & regulation principles

Japanese and Chinese regulations based on very different principles

- Different premises and regulations regarding CO₂ emissions with significant effects on vehicles.
- Setting default values may result in large deviations from 'real world' conditions.

Assessment of existing CO₂ standards

Critical issues and consequences

Critical aspects in existing legislations

- Engine separately considered
- Only 5 technologies chosen to include specific data

- Only drivetrain considered
- Metrics not suited to compare transport service efficiency
- *1
- Considering "basic vehicle version" but no specific configurations and technologies
- Only one drive cycle applied

Critical Situation

Consequences

- Fuel consumption displaying **no real values**
- Specific technologies to improve FE not considered
- Optimized use of reduction potential of each technology not possible
- No technology neutrality

Engineering effort would not focus on real condition → customer disadvantage

- Engineering optimization must focus on meeting regulatory performance requirements.
- Customers are confronted with sub-optimized fuel consumption under real world conditions.

Starting Point: Main componenets as starting point

Various components need to be considered to improve fuel consumption, but improvements very dependent on vehicle segment and use.

Introduction of Euro IV SCR technology for India

Possible short-term measure with 3 to 4% improvement (EU experience)

#1 Engine: introduction of Euro IV SCR technology - easy to implement and highly effective

• Euro IV nationwide to be implemented in India by 2017.

• At the latest with Euro V all manufacturers will likely be on SCR-technology

Influence of tires in fuel consumption measurement of HDVs

Outlook in tire development (EU boundaries)

#2 Tires: Rolling resistance with major impact on fuel consumption

• 10% improvement of rolling resistance results in 2.7% fuel efficiency improvement for the entire long haul vehicle – influence depending on selected cycle (driven speed).*

• Constant improvement in rolling resistance of tires with focus on improvements.

4

EU: Introduction of VECTO and CO2 monitoring

Simulation based CO₂ declaration approach

ACEA Whitebook

- There are 3 major pillars of a simulation based CO₂ declaration method:
- certified OEM input data, representative boundary conditions and VECTO

There are 3 major pillars of a simulation based CO₂ declaration method:

• certified OEM input data, representative boundary conditions and VECTO

Adaption of long-haul cycle to real-world routes ACEA initiated cycle validation activity for the long-haul cycle

The concept: Ensure realistic and representative cycle characteristics (slopes and speeds)

1. **Derive representative routes** for European long-haul road network based on statistical data

• 44 axes in total

2. **Measurement of slopes and speed profiles** on representative routes (>25.000 km)

3. **Compare speed and slope characteristics** with long-haul cycle. Make adaptions if needed.

• Representative routes show lower slope profile than ACEA cycle

Engine

Tire

shares

Weight

Simulation results vs. real measurement:

EC-simulation approach finalized with promising results

EC measurements and simulations clearly show: a simulation based certification process gives realistic, reliable and reproducible results.

Full vehicle approach can become a blueprint for international harmonization of fuel consumption measurement of HDVs

International harmonization of cycles, methods and simulation tool

Application of internationally harmonized standards as basis for specifically required characteristics

• World-wide standards for measurement of HDV fuel consumption need to be developed.

• **Regional aspects need to be taken into account** (world-wide simulation/regional test cycles/vehicles/...)

Integer Emissions - April 2015

Summary 6

Conclusion

Recommendation for next steps

