Heavy-duty vehicle technology potential around the world

Ben Sharpe

IEA-PCRA workshop on heavy-duty vehicle fuel efficiency regulations New Delhi, India April 29, 2015

Outline

- Big picture: regulatory development globally
- Heavy-duty vehicle (HDV) energy balance examples
- Technology potential studies for North America and Europe
- Comparing technology potential in different regions around the world and preliminary observations for India
- Conclusions

The International Council on Clean Transportation

- Non-profit research organization incorporated in 2005
- Roughly 35 full-time staff with offices in San Francisco, Washington DC, Berlin, London, and Beijing
- Mission: improve the environmental performance and energy efficiency of all modes of motorized transportation – passenger cars, heavy-duty trucks and buses, ocean-going ships, and commercial aviation – and the fuels they burn to address air pollution and climate change

Industry survey project

- Primary objectives
 - Interview a diverse cross-section of stakeholders in the trucking industry in India to build a deeper understanding on a number of topics related to fuel-saving technologies and practices
 - Gain insights into the key factors in decision-making processes for manufacturers and fleets
- Targeted stakeholder groups
 - Truck and bus original equipment manufacturers
 - Tier 1 suppliers (e.g., engines, transmissions, tires/wheels)
 - Truck and bus fleets
 - Testing facilities
 - Industry associations
- <u>All responses will be kept anonymous!</u>
- Key contacts
 - Ben Sharpe, ICCT <u>ben@theicct.org</u>
 - Jai Malik, TERI jai.kishanmalik@teri.res.in

Efficiency regulations in major markets

- Efficiency regulations under consideration in major freight markets
 - Markets include over 75% of HDV freight ton-km, HDV freight energy use

Source: ICCT Roadmap, 2013; BOE = barrel of oil equivalent energy

Areas for on-vehicle efficiency improvements

Example energy balance: tractor truck and trailer

Tractor-trailer, HHDDT65 drive cycle (80 kph average), half loaded, level road

Source: ICCT simulation analysis

Example energy balance: urban delivery truck

Urban delivery, HTUF Class 6 drive cycle (15 kph average), half loaded, level road

Source: ICCT simulation analysis

Impact of aerodynamics and rolling resistance as a function of speed

Aerodynamic drag contributes to an increasing portion of overall resistance as vehicle speed increases

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

Source: TIAX (2009) Assessment of Fuel Economy Technologies for Medium- and Heavy-Duty Vehicles.

Studies on HDV technology potential

- North American studies
 - NESCAUM Tractor-trailer study (Oct 2009)
 - http://www.nescaum.org/documents/heavy-duty-truck-ghg_report_final-200910.pdf
 - National Research Council report (March 2010)
 - <u>http://www.nap.edu/catalog/12845/technologies-and-approaches-to-reducing-the-fuel-consumption-of-medium--and-heavy-duty-vehicles</u>
 - National Research Council report (April 2014)
 - <u>http://www.nap.edu/catalog/18736/reducing-the-fuel-consumption-and-greenhouse-gas-emissions-of-medium--and-heavy-duty-vehicles-phase-two</u>
 - Analysis of SuperTruck technologies (June 2014)
 - <u>http://www.theicct.org/us-supertruck-program-expediting-development-advanced-hdv-efficiency-technologies</u>
 - Tractor-trailer simulation modeling of technology potential (April 2015)
 - <u>http://www.theicct.org/us-tractor-trailer-efficiency-technology</u>
 - Tractor-trailer technology cost and payback period assessment (April 2015)
 - <u>http://www.theicct.org/us-tractor-trailer-tech-cost-effectiveness</u>
- European studies
 - LOT 1 report (Feb 2011)
 - http://ec.europa.eu/clima/policies/transport/vehicles/docs/ec_hdv_ghg_strategy_en.pdf
 - TIAX report (Jan 2012)
 - <u>http://www.theicct.org/ghg-reduction-potential-heavy-duty-vehicles-eu</u>

Substantial opportunity for HDV efficiency improvements

Source: TIAX (2012). http://www.theicct.org/ghg-reductionpotential-heavy-duty-vehicles-eu

11

Tractor-trailer efficiency

- Combinations tractor-trailers are largest fuel consumer in most regions
 - For example, in the U.S., tractor-trailers are ~2% of all on-road vehicles, but consume 20% of vehicles' energy use and greenhouse gas emissions
 - According to the ICCT Roadmap model, tractor-trailers represent nearly 80% of total heavy-duty vehicle fuel use and carbon emissions in India
 - There are many available and emerging efficiency technologies

Fuel consumption reduction potential for tractor-trailers

From July 22, 2014 HDV stakeholder workshop with OEMs, suppliers, research groups, NGOs, government agencies. Lutsey et al (2014). <u>http://www.theicct.org/stakeholder-workshop-report-tractor-trailer-efficiency-technology-2015-2030</u>

13

Engine contribution to advanced efficiency packages

 ICCT's latest technology potential report for tractor-trailers in North America: engine efficiency amounts to about 1/3 to almost 1/2 of all potential fuel consumption benefits from 2020-2030 technology packages

Fuel consumption reduction from 2010 baseline

Delgado and Lutsey (2015). Advanced tractor-trailer efficiency technology potential in the 2020 to 2030 timeframe. http://www.theicct.org/us-tractor-trailer-efficiency-technology

ICCT THE INTERNATIONAL COUNCIL ON Clean Transportation

Preliminary technology potential observations for India

- Typical characteristics of HDVs in India
 - Freight hauling: lower speeds than trucks in Europe or North America; likely comparable to speeds in China
 - Overloading quite common
 - Trucks have lower power-to-weight ratios compared to other major markets
- Impacts for fuel efficiency
 - Lower speeds, high percentage of heavily-loaded trucks
 → engine and rolling resistance improvements much more important than aerodynamics

Relative contribution to overall technology potential for tractor-trailers

icct THE INTERNATIONAL COUNCIL ON Clean Transportation

Large

Moderate

16

Conclusions

- Development of HDV fuel efficiency and GHG regulations is happening in a number of countries and regions around the world
- Assessing the technology potential across the various categories of HDVs is an essential step in the regulatory development process
- Numerous studies evidence significant opportunities for the development and deployment of fuel-saving technologies
- Technology efficacy varies from region to region based on drive cycles, payloads, geography, and infrastructure conditions
- For India, engine and tire rolling resistance improvements are the technology areas that likely present the biggest opportunities for fuel savings in the near-term

Thank you!

Ben Sharpe <u>ben@theicct.org</u> Anup Bandivadekar <u>anup@theicct.org</u>

Overview of heavy-duty vehicle regulations globally

Anup Bandivadekar

IEA-PCRA workshop on heavy-duty vehicle fuel efficiency regulations New Delhi, India April 29, 2015

Regulatory development timelines

Country/ Region	Regulation Type	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Japan	Fuel economy	Phase 1 regulation implemented starting MY 2015											
		Phase 2 under consideration								Phase 2 implementation			
United States	GHG/Fuel efficiency	Standard proposal	Final rule				Regulation (mandator	n implemer ry DOT pro	nted starting gram starts	MY 2014 MY 2016)			
					Phase 2 r develo	egulatory pment	Phase 2 proposal	Phase 2 final rule				Phas impleme	e 2 ntation
Canada	GHG			Standard proposal	Final rule		Regula	ation impler (optional u	mented start ntil MY 2016	ing MY 20 ፩)	14		
						Phase 2 deve	2 regulatory elopment	Phase 2 proposal	Phase 2 final rule			Phas impleme	e 2 ntation
China	Fuel consumption	Test procedure finalized	Industry standard proposal	Industry standard implemented	National standard adopted	Final reg newly	gulation of N certified ver	lational star hicles and J	ndard effecti Iuly 1, 2015	ve on July for existing	1, 2014 for g vehicles	Next p impleme	hase ntation
European Union	CO ₂ test procedure	Те	chnical stu	dies	Impact assessmer	Test j t simul fir	protocol and lation model nalization	1				Poli impleme	cy ntation
Korea	Fuel efficiency	Technical studies			Impact assessment and test procedure development Regulatory development and finalization								
California	End-user purchase requirements	Requirements for new tractors, trailers (2011+)			Additional requirements for existing tractors and trailers (< MY 2010) reefers (< MY 2010)						ers and		

Continuum of test procedure options

Qualitative assessment of test procedure options for India

Certification option	Ability to leverage existing testing facilities	Complexity of certification process	Timeframe for regulatory implementation
Full vehicle simulation – adapted version of VECTO, GEM, Japan or China model			5-7 years
Full vehicle simulation – new India model		?	5-7 years
Chassis dynamometer			5-7 years
Engine dynamometer Engine dynamometer			3-5 years
Clean Transportation	avorable Mc	oderate	Jnfavorable