

THE ALUMINIUM STORY

ENERGY BANK FOR THE FUTURE

www.thealuminiumstory.com

4000 15:00 Done What's new

AND NORTHERN R Your boarding pass, now in Passbook

EUROPEAN UNION

Just download your boarding pass and add it to Passbook to view offline.

iMore

Sir Jonathan Ive Senior Vice President of Design, Apple Inc.

"The best design acknowledges that you can't disconnect the form from the material. The material informs the form." "The only way to make the *MacBook Pro* unibody was to machine it from a single piece of aluminium."

The Future Moves with Aluminium

"The use of aluminium... brings many benefits in terms of weight savings, improved fuel efficiency, lower emissions, increased crash safety and even better vehicle dynamics"

"Aluminum will be the material of choice"

The Future Builds with Aluminium

The Future Builds with Aluminium

recycled durabel sympatheticsourcing efficient powerful recycled ight circular efficient powerful recycled circular powerful recycled powerful mining responsible urban flexibleeconomic architecture strong buildings green

The Future Moves with Aluminium

The Future Protects with Aluminium

(alu) The Future Moves with Aluminium

"Aluminium allows *Bombardier* to manufacture low weight vehicles and thus reduce environmental impact, with a high quality exterior finish"

Guillaume Rétaux Director Strategic Sourcing

"The aluminium curtain walling system of the Hong Kong Shanghai Bank looks as crisp as the day it opened in 1986"

Heasure Young watchingh Schweppes. Jonic Water CONTAINS QUININE

Available EoL scrap

"split c. 50:50 between wrought and casting alloys"

Three quarters of all aluminium ever produced is still in productive use

- 1 billion tonnes primary produced since 1888
- 750 million tonnes in products in use

• A positive recycling story but...

...more significantly a story of

- Demand growth
 - For light, strong, conductive, protective products
 - 800 million tonnes produced since 1980
- Durability
 - Aluminium in long lifetime products have not yet reached the end of their "First Life"
 - Long lifetime products tend to have high recycling rates (>90%)

то траними то траними

Apparent consumption (semis)

"dominated by long/mid lifetime products"

Aluminium in use

"dominated by long/mid lifetime products"

Final product demand per capita

"In Use" stock per capita

Global aluminium demand will be met increasingly from primary sources

In 2020, less than 20% of global demand will be met through recycling of "old scrap"

End of Life Recycling (Collection) Rates

2020: what if all available End of Life scrap is recovered?

Primary Production 1990

Primary Production 2013

World Aluminium

Regionalisation

950-1970

- Integrated aluminium companies with regional value chains located close to markets (Europe, Japan, N America);

Integration

- Regional associations;

- Limited scrap flow, little trade.

Globalisation

- Integrated model
- applied to new
- production centres,
- close to resources
- (Brazil, Australia, GCC)
- to serve distant, mature markets;
 - Global price discovery (LME);
 - IAI incorporated;
 - Recycling.

Regionalisation

- Differential pricing (regionally & along
- value chain);
- Increase in seabornebauxite;
- Increase in traded scrap;
 - Smelting follows energy;
 - Downstream at both smelting & market.

2008 data

Since then:

...China aluminium production increased by 80%

...China alumina production increased by over 100%

...China bauxite imports doubled

...Indonesia resources export ban (3/4 of China bauxite import in 2013)

...China scrap imports increased by almost 50%

Mining	Bauxite	Refin.	Alumina	Prod.	Aluminum	Form.	Semis	Manuf.	Products	Use	Scrap	Prod.
USA		USA		USA	-	USA		USA		USA -		USA
NOR		NOR		NOR	1	NOR		NOR		NOR		NOR
SGP		SGP	1201	SGP		SGP		SGP		SGP		SGP
IRL		IRL		IRL		IRL	X	IRL	$ \land $	IRL		IRL
AUS		AUS	No.	AUS	X	AUS	XX	AUS	VN	AUS	K N	AUS
CAN		CAN	1 1111	CAN	X I	CAN		CAN		CAN	11 1	CAN
CHE		CHE	1251111	CHE	WARAN.	CHE -	1 / /	CHE	1 101	CHE		CHE
NLD		NLD	I N X I	NLD	LANA VY	NLD	X / I	NLD	111/16	NLD		NLD
DNK		DNK	N M N N	DNK		DNK		DNK		DNK	N	DNK
SWE		SWE	N XX VI	SWE	HARAM	SWE	AN AN	SWE	NAMA II	SWE	IN IN	SWE
FIN		FIN	A SALVA	FIN		FIN	NXX//I/	FIN	NXX III	FIN	181	FIN
AUT		AUT	A XXII	AUT	KIN XXX	AUT	A WWW	AUT	AND	AUT	MAX III	AUT
GBR	A N HU	GBR	$M \rightarrow M$	GBR	XX	GBR -	XIXIX	GBR -	HAR Do	GBR	HI XIX	GBR
BEL		BEL	A ZAMA	BEL	EXX MA	BEL	SXXX8	BEL	ISV-SEC	BEL	AVX-	BEL
JPN	A Mais	JPN	-AAAAA	JPN	- ANA	JPN -	724124290	JPN -		JPN -	de la	- JPN
FRA	A IN	FRA		FRA		FRA -	1000	FRA	CON A DE	FRA	AT 12	FRA
ISL		ISL	ICA MIDA	ISL		ISL	122-22	ISL		ISL	Rat T	ISL
DEU	1260	DEU	THE	DEU		DEU 🗧		DEU		DEU	1112	DEU
ITA		ITA		ITA		ITA -		ITA -		ITA -	1111-	ITA
ESP		ESP -		ESP		ESP -		ESP		ESP		ESP
KOR		KOR	N NA HUTP	KOR	r / Mala	KOR	IN AN A	KOR	AL ALLE	KOR		KOR
NZL	× 1110	NZL	NAME I	NZL	Y MAN	NZL	WWW VA	NZL	A AM	NZL	1.11.11	NZL
QAT	< Millin	QAT	XXXVIII	QAT	X MAN	QAT		QAT	IN IN ISS	QAT	L N	QAT
GRC	- M	GRC	N N H	GRC	17 A WAR	GRC	XXXXX	GRC	HAL	GRC	11/11	GRC
ARE	1. 196.01	ARE	A AND	ARE	17011000	ARE	A WAY BY	ARE	AND YES	ARE	A A B	ARE
PRT	// A 161.01	PRT	V N IAU	PRT	KUZ HARK	PRT		PRT		PRT	V.	PRT
CHL		CHL	A MAR	CHL		CHL	NA AV	CHL	$/ H M \lambda$	CHL	X III	CHL
CZE	11 N. 11	CZE		CZE	17 11 100083	CZE	- XIXA	CZE -	HA	CZE	111	CZE
ARG	MA H	ARG		ARG		ARG	ANAMAN	ARG		ARG		ARG
VEN -		VEN	1181 1	VEN		VEN	/HXX 1	VEN	HI AN	VEN	111	VEN
MYS		MYS	IIII AND	MYS		MYS	ATTIMA 1	MYS		MYS	111	MYS
POL	I DI N	POL	I MOVA V	POL		POL		POL		POL	1111	POL
HUN		HUN	I DUX VX	HUN	L. MEDIAN	HUN		HUN	MILL CONTRACTOR	HUN	X	HUN
BGR		BGR		BGR	1 Makala A	BGR	W TAN	BGR		BGR	N MU	BGR
THA	111 IX	THA		THA	1 Malliona - A	THA	11 1	THA	THE YAMA	THA		THA
SAU		SAU		SAU		SAU		SAU		SAU	111	SAU
OMN	THU A	OMN	100/ 111	OMN	1 1 1 1 1 1 1 1	OMN	II X	OMN		OMN	N M	OMN
TUR	1111	TUR		TUR		TUR	H > 1	TUR		TUR	1	TUR
MEX		MEX		MEX	1	MEX	1/2	MEX	17 34	MEX	R.I	MEX
RUS -	11 10110	RUS	2013	RUS		RUS	1 -	RUS -	11 12	RUS	12	RUS
BHR	14111	BHR	WH W	BHR	118	BHR		BHR	1201	BHR		BHR
IRN		IRN	ALL A	IRN	111111	IRN	1	IRN		IRN		IRN
CHN		CHN		CHN	Sector Sector	CHN		CHN		CHN -		CHN
SRB		SRB	111 / 12	SRB	1 Ult II I	SRB		SRB		SRB		SRB
BRA	1111	BRA	11/1/1	BRA	11111	BRA	11	BRA	17	BRA		BRA
COL		COL	WK IJA	COL		COL		COL		COL		COL
ROU		ROU	IN ALL	ROU	111	ROU		ROU		ROU		ROU
ZAF	1111	ZAF	IN NUA	ZAF	NUM	ZAF		ZAF		ZAF		ZAF
DOM		DOM	V XX V	DOM	INC	DOM		DOM		DOM		DOM
IDN	1 11/1 1	IDN	NAN	IDN	TIN	IDN	1.1	IDN		IDN		IDN
SUR	A TAK F	SUR	LA F	SUR		SUR		SUR		SUR		SUR
EGY	111 1	EGY	$M \setminus I$	EGY		EGY		EGY		EGY		EGY
JAM	288 ST	JAM	7 1	JAM		JAM		JAM		JAM		JAM
DZA	11 /	DZA		DZA		DZA		DZA		DZA		DZA
IND	AL 1	IND		IND	1	IND -	1	IND		IND		IND
VNM	11	VNM		VNM	1	VNM		VNM		VNM		VNM
PHL		PHL		PHL		PHL		PHL		PHL		PHL
GUY	11	GUY		GUY		GUY		GUY		GUY		GUY
PAK		PAK		PAK		PAK		PAK		PAK		PAK
MOZ		MOZ		NIOZ		MOZ		MOZ		MOZ		NIUZ
GHA	17	GHA		GHA	- C	GHA		GHA		GHA		GHA
NGA		NGA		NGA		NGA		NGA		NGA		NGA
CMR		CMR		CMR		CMR		CMR		CMR		CMR
BGD		BGD		BGD		BGD		BGD		BGD		BGD
SLE		SLE		SLE		SLE		SLE		SLE		SLE
GIN		GIN		GIN		GIN		GIN		GIN		GIN

Dismantling & contraction of integrated value chain

Increasing demand from customers for responsibly sourced aluminium

The aluminium industry must demonstrate...

- 1. that it produces responsibly, by mitigating environmental impacts and positively impacting the communities in which it operates;
- that its products bring a net benefit to society in terms of reduced environmental impact; improved quality of life, health, safety & wellness and economic growth;
- 3. that at the end of product life, the value of the metal, the energy that went into its production and the resource inputs are retained and realised as another product, through collection and recycling or energy recovery.

THE ALUMINIUM STORY

ENERGY BANK FOR THE FUTURE

www.thealuminiumstory.com

Industry must responsibly manage the transformation of raw materials into products:

- Rehabilitate bauxite mine sites;
- Improve alumina recovery rates;
- Reduce water consumption where appropriate;
- Improve energy efficiency;
- Reduce carbon consumption;
- Manage emissions and product waste streams;
- Reduce caustic use, improve caustic recovery.

Global Electrolytic Energy reduced by 15% since 1980

THE

STORY

ALUMINIUM

www.world-aluminium.org

Regional Energy Intensities

www.world-aluminium.org

Smelting Power Mix (GWh)

Perfluorocarbons (PFCs)

www.world-aluminium.org

Carbon Footprint

Anthropogenic GHG Emissions by Sector (total 50 Gt CO₂e in 2010)

Opportunities to reduce GHG emissions through use of aluminium in:

- Green buildings;
- Lightweight vehicles;
- Protective packaging;
- Efficient machinery;
- Cables;
- Turbines & solar panels;
- Efficient consumer durables;
- Intelligent control systems.

Aircraft Bringing the World Closer with Aluminium

Freight Containers

Increasing Trade with Aluminium

Marine Cutting the Waves with Aluminium

Automotive High-Performance with Aluminium

Buses Transporting More People with Aluminium

- The use of 1 kg of aluminium replacing heavier materials in a car or light truck can save a net 20 kg of CO₂ over the life of the vehicle;
- This figure is even higher for more weight sensitive applications (for instance, up to 80 kg CO₂ per kg aluminium used in trains);
- The 17 million tonnes of aluminium used in transport in 2012 could save almost 350 million tonnes CO₂ and over 100 billion litres of crude oil over the vehicles' lives.

THE ALUMINIUM STORY

ENERGY BANK FOR THE FUTURE

www.thealuminiumstory.com

The Aluminium Story

00

From Mine to Market

FRESHNESS & FLEXIBILITY

30% of the food in developing countries perishes due to the lack of packaging. Aluminium has the best barrier properties to keep food and drink, pharmaceuticals and toiletries fresh and safe, guaranteeing longer shelf-life and contributing to the sustainability of packaged products. SHOW PRODUCT SHELF

Carrier	(ŀ							100)% 🔳
<	►	1		http://recycling.world-aluminium.org](Google			
1					Untitled				+
	ali	AI L	uminii	um for Future Generations™			ENGLISH	Open Menu 🔺	-

RECYCLING TRANSFORMS PRODUCTS & SOCIETIES

The recycling of aluminium products ensures that this valuable metal can change its use over and over again, while retaining its unique qualities. Thus, what was once a drinks can could one day form part of an aircraft, a laptop computer or even another can.

THE ALUMINIUM STORY

ENERGY BANK FOR THE FUTURE

www.thealuminiumstory.com