Gaps and Barriers for Energy Technology Development and Deployment
View from ISGAN TCP

Presentation by Maarten Noeninckx
Paris 20 March 2017
ISGAN in a nutshell

International Smart Grid Action Network TCP (ISGAN)

‘Strategic platform to support high-level government attention and action for the accelerated development and deployment of smarter, cleaner electricity grids around the world’

- An initiative of the Clean Energy Ministerial (CEM)
- Organized as the Implementing Agreement for a Co-Operative Programme on Smart Grids (ISGAN)

The CEM is the only multilateral forum dedicated exclusively to the advancement of clean energy technologies and related policies. ISGAN is the only global government-to-government forum on smart grids
Activities of ISGAN

ISGAN ACADEMY
Capacity building.

TRANSITIONS
Societal changes and smart energy systems.

POWER SYSTEM
Updates, options, and scenarios for technologies and system solutions.

DRIVERS AND EXEMPLARS
National drivers for smart grids and best practices for implementation

COST-BENEFITS
Analysis and tools for the sustainability evaluations of smart grids projects

STRATEGIC COMMUNICATION
ISGAN messages translated into impactful policy messages

SIRFN
Global collaboration on smart grids testing protocols and facility best practices
Main drivers that motivate the governments to develop and apply smart grid solutions and the related technologies.

Identify gaps, opportunities, synergies among smart grid activities and programmes.

Catalogue the wide range of smart grid activities underway, mapping the actual activities against the drivers and interests.

Several outstanding smart grids projects have been discussed during webinars and workshops.

Case Books dedicated to outstanding smart grid applications.

To date, two case books have been delivered, and specifically on Advance Metering Infrastructure (AMI) and Demand Side Management (DSM). A third case book about Consumer Engagement & Empowerment is under preparation.

The Case Books have been transformed into web-based dynamic documents and are meant to be updated on a regular basis.
Tools for the assessment of the present smartness of electricity networks

Tools for the evaluation of benefits and costs of smart grids projects characterised by a limited system impact (i.e. local projects).

Six toolkits have been developed covering storage, network automation, ICT and AMI.

Governance and socio-technical issues associated with smart grids deployment.

Preparation of a prototype of a smart grids foresight process to help policy makers to orchestrate a sustainable transition.

Evaluation of processes of market forming, actor involvement and integration

LinkedIn Discussion group entitled “smart grid transition”
ANNEX 5

Smart grid research and testing facilities, test beds, testing projects: identification of collaboration opportunities among test facilities, state of the art testing practices, identification of testing protocols needing attention,

RES integration: Test Protocols for Advanced Inverter Functions for PV and storage integration

Power Systems Testing: Assess testing needs for systems of systems accounting for growing interdependencies

Lab Testing Methods: Advance state-of-the-art hardware-in-the-loop testing systems

ANNEX 6

Improve understanding of Smart Grid technologies accelerate their development and deployment and promote adoption of related enabling regulatory and government policies.

Discussion papers, state-of-the-art reports, case books
Offer the ISGAN community of high level engineers and decision makers a means of rational and efficient continuous technical skills complement and update in the field of smart grids.

The Academy is proposed as a set of e-learning core modules dealing with the entire value chain of smart grid.

Fundamentals and further reading modules are also provided as appendices.
Activities of ISGAN

IMPACT

ANNEX 4

Organization of knowledge, key issues, important themes, insightful analysis for the benefit of decision makers.

Lessons learned and best practices on smart grid.

Dissemination of efforts of other ISGAN Annexes

ISGAN interface towards the “Ask an Expert” initiative

Interaction with the CEM Clean Energy Solution Centre (webinars, knowledge sharing, ISGAN On-line Smart grid glossary.)
Collaborations and synergies
ADDRESSING GAPS AND BARRIERS FOR SMART GRID TECHNOLOGY DEVELOPMENT AND DEPLOYMENT

Different approaches and experiences
Contribution to Technology evolution

- NO DIRECT TECHNOLOGY DEVELOPMENT OR DEMONSTRATION ACTIVITIES
- EXCHANGE AND DISSEMINATION OF INFORMATION AND PERSPECTIVE
- DEVELOP PROTOCOLS AND BEST PRACTICES, IDENTIFY ENVIRONMENTAL ISSUES AND MITIGATION OPTIONS
- A GLOBAL BENCHMARK AND COLLABORATIVE ATTITUDE AMONG PARTICIPATING COUNTRIES
- INDICATE TO EMERGING COUNTRIES THE TECHNOLOGICAL ALTERNATIVES AVAILABLE FOR THEIR OWN DEVELOPMENT

SIRFN – ANNEX 5: TESTING PROTOCOL FOR SMART INVERTERS

- DEFINITION OF TEST PROTOCOLS FOR ADVANCED INVERTER INTEROPERABILITY FUNCTIONS
- SEVERAL LABORATORIES HAVE APPLIED THE PROTOCOLS AND COMPARED RESULTS IN DIFFERENT CONDITIONS
- PROTOCOL ASSESSMENT HAS BEEN SHARED WITH KEY STAKEHOLDERS AND ARE NOW ACTING AS THE KEY INPUT FOR CERTIFICATION PROCEDURES (UL 1741SA; IEEE 1547, Korea, etc.)
Importance of Smart Grids Testing (and Annex 5)

- Smart grids integrate previously isolated systems in larger, more complex systems-of-systems.
- This increases the importance of grid sensing and control to manage and balance in real-time a growing diversity of generation and end-use assets.
- Effective lab testing methods, protocols, and practices are needed to validate performance and evaluate growing interdependencies before costly demonstrations and deployments proceed.
- Lab testing also informs standards development.

SIRFN EXAMPLE: As the number of rooftop PV inverters increases, so does the importance of their predictable response to grid operator signals. If one inverter fails to ride through a voltage disturbance as commanded, then there is likely little problem. But if many inverters fail to ride through, then the risk of a cascading failure increases. Hence, ISGAN SIRFN developed test protocols for a set of core functions to assess inverter response to grid operator signals.
<table>
<thead>
<tr>
<th>Publication name</th>
<th>Year</th>
<th>Type of Publ.</th>
<th>Level</th>
<th>Driver</th>
<th>Trend *</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEXIBLE POWER DELIVERY SYSTEMS: An Overview of Policies and Regulations and Expansion Planning and Market Analysis for the United States and Europe</td>
<td>2013</td>
<td>Discussion paper</td>
<td>TSO</td>
<td></td>
<td>Integration</td>
</tr>
<tr>
<td>Smarter & Stronger Power Transmission: Review of feasible technologies for enhanced capacity and flexibility</td>
<td>2013</td>
<td>Discussion paper</td>
<td>TSO</td>
<td></td>
<td>Integration</td>
</tr>
<tr>
<td>TSO-DSO interaction: An Overview of current interaction between transmission and distribution system operators and an assessment of their cooperation in Smart Grids</td>
<td>2014</td>
<td>Discussion paper</td>
<td>TSO+DSO</td>
<td></td>
<td>Decentralization</td>
</tr>
<tr>
<td>The Smart & Strong Grid : Technology, Policy, and Finance to Connect People with Reliable Clean Energy</td>
<td>2014</td>
<td>Policy Brief</td>
<td></td>
<td></td>
<td>Integration</td>
</tr>
<tr>
<td>The Smart & Strong Grid : Connecting Clean Energy with People</td>
<td>2014</td>
<td>Technology Brief</td>
<td></td>
<td></td>
<td>Integration</td>
</tr>
<tr>
<td>Spotlight on Smart and Strong Power T&D Infrastructure ver. 1.0</td>
<td>2015</td>
<td>Case Book</td>
<td>TSO+DSO</td>
<td></td>
<td>Integration, decentralization, digitalization</td>
</tr>
<tr>
<td>Deploying Smart and Strong Power Grids: Best Practices from Austria, Ireland and Around the World</td>
<td>2015</td>
<td>Public Webinar</td>
<td>TSO+DSO</td>
<td></td>
<td>Integration, decentralization, digitalization</td>
</tr>
<tr>
<td>Synchrophasor Applications for Wide Area Monitoring and Control</td>
<td>2016</td>
<td>Discussion paper</td>
<td>TSO</td>
<td></td>
<td>Digitalization</td>
</tr>
<tr>
<td>Spotlight on Smart and Strong Power T&D Infrastructure ver. 2.0</td>
<td>2016</td>
<td>Case Book</td>
<td>TSO+DSO</td>
<td></td>
<td>Integration, decentralization, digitalization</td>
</tr>
<tr>
<td>Storage and balancing as key elements for future network planning and electricity markets design</td>
<td>2016</td>
<td>Discussion paper</td>
<td>TSO</td>
<td></td>
<td>Integration</td>
</tr>
<tr>
<td>The role and interaction of microgrids and centralized grids in developing modern power systems – A case review</td>
<td>2016</td>
<td>Discussion paper</td>
<td>DSO</td>
<td></td>
<td>Broader economic growth and access</td>
</tr>
</tbody>
</table>
Contribution to Market development

• RAPID UPTAKE OF RENEWABLES REQUIRES SMART GRIDS DEPLOYMENT
• BOLSTER THE DEMAND FOR SOPHISTICATED CONTROL SYSTEMS
• ISGAN GLOBAL PARTICIPATION REPRESENTS MORE THAN 90% WORLDWIDE INVESTMENTS
• EXPERIENCES EXPRESSED ARE UNIQUE FORUM OF DISCUSSION AND EXPERIENCE SHARING

ISGAN ANNEX 2 – CASE BOOK ON ADVANCED METERING INFRASTRUCTURE

• GATHERS THE EXPERIENCE OF DEPLOYING SMART METERS IN 19 COUNTRIES, CHARACTERISED BY DIFFERENT NETWORK CONDITIONS, REGULATIONS, ENERGY MIX, LEGISLATION, CONSUMER REACTIONS
• LESSONS LEARNED FROM THIS BENCHMARK AND INSIGHT IS OF HIGH VALUE FOR THE POLICY MAKERS
• MORE THAN 3300 COPIES OF THE PDF VERSION THIS REPORT HAVE BEEN DOWNLOADED
• IMPORTANCE OF FINAL USER ACCEPTANCE, REGULATION, PRICING POLICIES, PRIVACY, CYBERSECURITY, DATA ANALYSIS (BIG DATA) AND AMI BUSINESS CASES
• **TOP PRIORITY** FOR ISGAN.

• **UNBIASED TECHNICAL EXPERTISE** AND THE DIRECT INTERACTION WITH POLICY MAKERS ARE TWO MAJOR ASSETS.

• **SUCCESS FACTORS:** **TECHNICAL SOUNDNESS** OF THE INFORMATION AND KNOWLEDGE

 EFFICIENT TRANSLATION OF THE TECHNICAL CONCEPTS INTO IMPACTFUL POLICY MESSAGES.

• **DEDICATED ANNEX** SET UP SINCE THE BEGINNING OF THE INITIATIVE.

ISGAN ANNEX 2 – ASSISTING THE GOVERNMENTS OF MEXICO AND SOUTH AFRICA

• **MEXICO’S TRANSFORMATIVE POWER SYSTEM REFORMS:** OPPORTUNITIES TO INTEGRATE ADVANCED DEVICES AND APPROACHES INTO MEXICO’S ELECTRICITY GRID AND ACTIVELY SEEKING INTERNATIONAL EXPERIENCE ON THIS TOPIC

• **SOUTH AFRICA DEVELOPING THE MARKET FOR ROOFTOP PHOTOVOLTAIC:** EFFECTIVELY SHOWCASED EMERGING FRAMEWORKS, METHODOLOGIES, AND EXPERIENCES FOR INTEGRATING ROOFTOP PV IN ELECTRIC POWER SYSTEMS AND MARKETS, AND HOW THEY COULD POTENTIALLY BE APPLIED IN SOUTH AFRICA
Typical Output

- Discussion Papers
- Messages for Policymakers
- Workshops
- Technical Papers
- Case Books
- Conference Presentations
- Technology Briefs
- Webinars
Vision: The vision of ISGAN is the attainment of national, regional and global clean energy and climate goals supported by the integration of advanced technological, operational and analytical capabilities for electric power grids, including the smart management and coordination of the participants in the electricity system.

Mission: The mission of the International Smart Grid Action Network is to provide a platform for the development and exchange of expertise and competence on smarter, cleaner electric power systems and to serve as an important channel for communication of related knowledge, trends, and lessons learned, and future plans in support of national, regional and global climate and clean energy objectives.
• **Key messages**
 - ISGAN emphasizes the importance of strong, reliable, resilient, flexible, and affordable power grids, supported by the digitalization of the electricity system for achievement of goals on the “grid edge” (e.g., integration of EVs, RE, energy storage, and demand side management)

• **The path forward**
 - ISGAN notes five (5) major global trends for electricity systems: decarbonization, decentralization, integration, digitalization, and (broader, sustained attention to) economic growth and access
 - Of critical importance to progress on all five trends is the flexibility of the electricity system enabled by smart grid solutions
 - ISGAN has selected flexibility and digitalization as its principal themes for 2017 (and maybe beyond)
• **Continue to target**, first and foremost, Government agencies and officials, especially those developing or implementing policies and programs on smart grids.

• Identify areas for **increased attention and investment**; examine **smart grid development** in relation to regulatory and institutional considerations and technical needs; improve **international collaboration** and competency on smart grid **testing and evaluation**; and further enable a **global community of smart grid practitioners**.

• Assess its potential role in **deeper grid modelling, analysis, metrics and scenarios development** in support of broader climate and clean energy efforts, such as the IEA Energy Technology Perspectives suite of activities.
For more information, please visit:

- ISGAN: www.iea-isgan.org
- 21st Century Power Partnership: www.21stcenturypower.org
- Power System Challenge: www.powersystemchallenge.org
- Clean Energy Ministerial: www.cleanenergyministerial.org
- IEA Energy Technology Network: https://www.iea.org/tcp/
- Clean Energy Solutions Center
 including “Ask-an-Expert” service: www.cleanenergysolutions.org
- Global Smart Grid Federation:
 www.globalsmartgridfederation.org

- Contact: maarten.noeninckx@economie.fgov.be
- +32 472 73 76 51

Thank you!