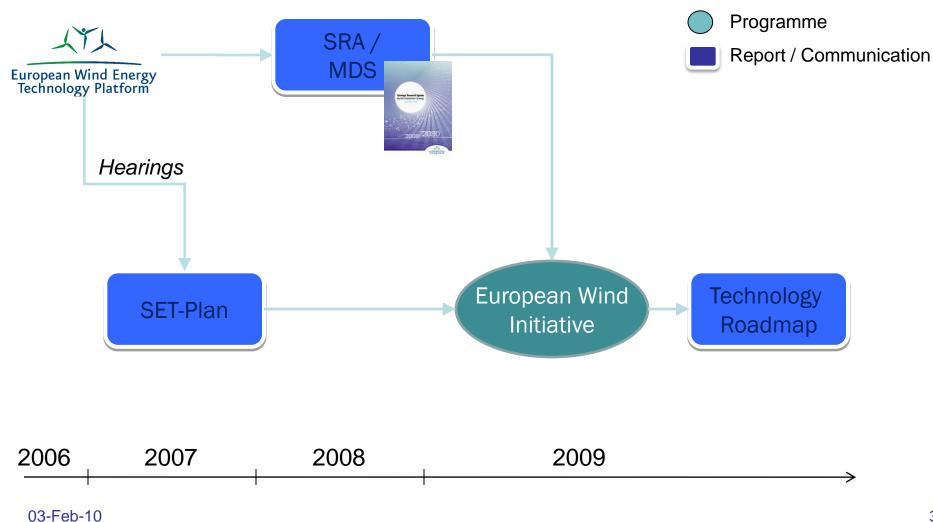

European Wind Energy Technology Roadmap

Making Wind the most competitive energy source

TPWind – The European Wind Energy Technology Platform


Key data:

- ✓ Official Technology Platform
- ✓ Launched in 2007
- ✓ 150 members
- ✓ 6 working groups
- ✓ SRA / MDS published in 2008

TPWind involvement in SET-Plan process

3

European Wind Initiative – SET-Plan objectives (2007)

❑ European Wind Initiative: focus on large turbines and large systems validation and demonstration (relevant to on and off-shore applications).

SET-Plan - Reaching 2020 objectives

- Double the power generation capacity of the largest wind turbines, with off-shore wind as the lead application.
- Enable a single, smart European electricity grid able to accommodate the massive integration of renewable and decentralised energy sources.

□ SET-Plan - Reaching 2050 objectives

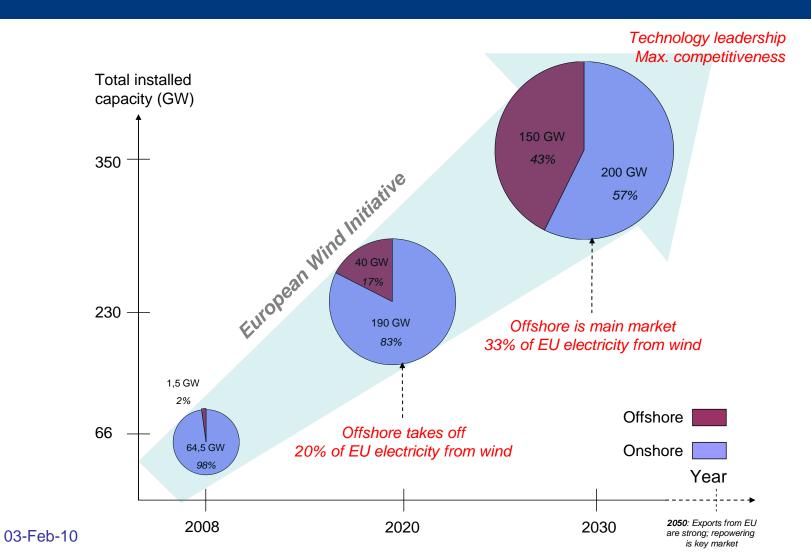
 Bring the next generation of renewable energy technologies to market competitiveness.

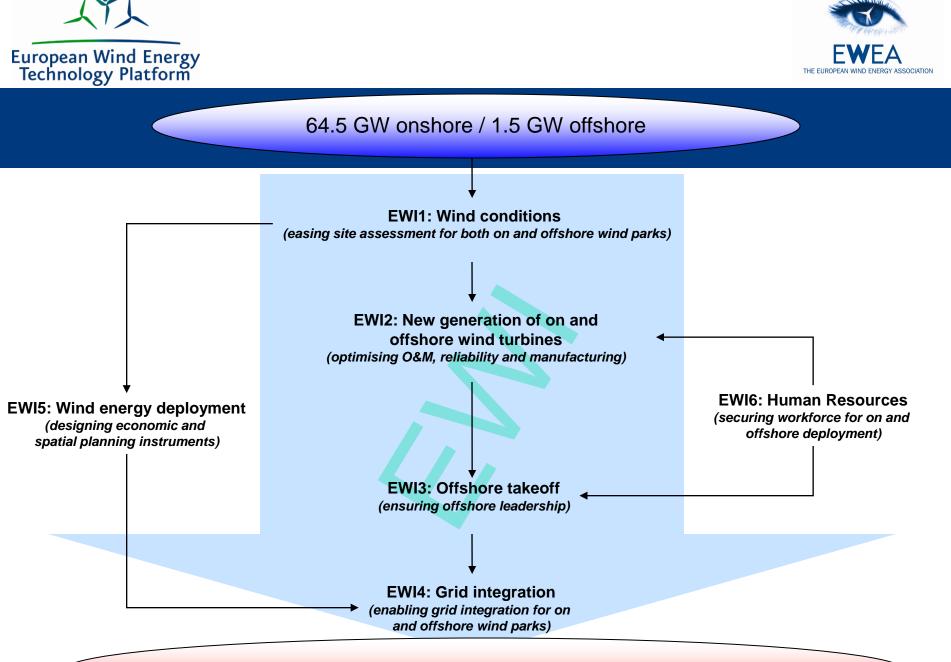
EWI in 3 objectives

□ To make wind energy the most competitive energy source on the market onshore in 2020, and offshore in 2030

□ To enable the required large-scale deployment and grid integration of wind energy offshore and onshore with the aim of reaching wind penetration levels

20% in 2020, 33% in 2030 and 50% in 2050


Ensuring the European technology leadership on- and offshore, and developing large offshore wind turbines


Including exploring concepts up to 20 MW (10-20 MW range)

EWI – Large-scale high-tech roadmap

High competitiveness / High penetration levels / Technology leadership

03-Feb-

Financing Communication COM(2009) 519 final

□ Impact of the Wind Industrial Initiative:

- Fully competitive wind power generation
- Capable of contributing up to 20% of EU electricity by 2020 and as much as 33% by 2030
- More than 250 000 skilled jobs could be created.

Technology roadmap SEC(2009) 1295

□ Strategic objective

To improve the competitiveness of wind energy technologies, to enable the exploitation of the offshore resources and deep waters potential, and to facilitate grid integration of wind power.

□ Industrial sector objective

To enable a 20% share of wind energy in the final EU electricity consumption by 2020.

Technology roadmap

SEC(2009) 1295

New turbines and components - Objectives

- New turbines and components to lower investment, operation and maintenance costs
 - To develop large scale turbines in the range of 10 20 MW especially for offshore applications.
 - To improve the reliability of the wind turbine components through the use of new materials, advanced rotor designs, control and monitoring systems.
 - To further automate and optimise manufacturing processes such as blade manufacturing through cross industrial cooperation with automotive, maritime and civil aerospace.
 - To develop innovative logistics including transport and erection techniques, in particular in remote, weather hostile sites.

New turbines and components - Actions

- New turbines and components to lower investment, operation and maintenance costs:
 - A R&D programme focused on new turbine designs, materials and components addressing on- and offshore applications coupled with a demonstration programme dedicated to the development and testing of a large scale turbine prototype (10-20MW).
 - A network of 5-10 European testing facilities to test and assess efficiency and reliability of wind turbine systems.
 - An EU cross-industrial cooperation and demonstration programme drawing upon the know-how from other industrial sectors (e.g. offshore exploration) for mass production of wind systems focused on increased component and system reliability, advanced manufacturing techniques, and offshore turbines. A set of 5 – 10 demonstration projects testing the production of the next generation of turbines and components will be carried out.

Offshore Technology - Objectives

- Offshore technology with a focus on structures for large-scale turbines and deep waters (> 30 m).
 - To develop new stackable, replicable and standardised substructures for large scale offshore turbines such as: tripods, quadropods, jackets and gravity-based structures.
 - To develop floating structures with platforms, floating tripods, or single anchored turbine.
 - To develop manufacturing processes and procedures for massproduction of substructures.

Offshore Technology - Actions

- Offshore technology with a focus on structures for large-scale turbines and deep waters (> 30 m).
 - A development and demonstration programme for new structures distant from shore aiming at lower visual impact and at different water depths (>30m).
 - At least 4 structure concepts should be developed and tested under different conditions.
 - A demonstration programme on advanced mass-manufacturing processes of offshore structures.

Grid integration - Objectives

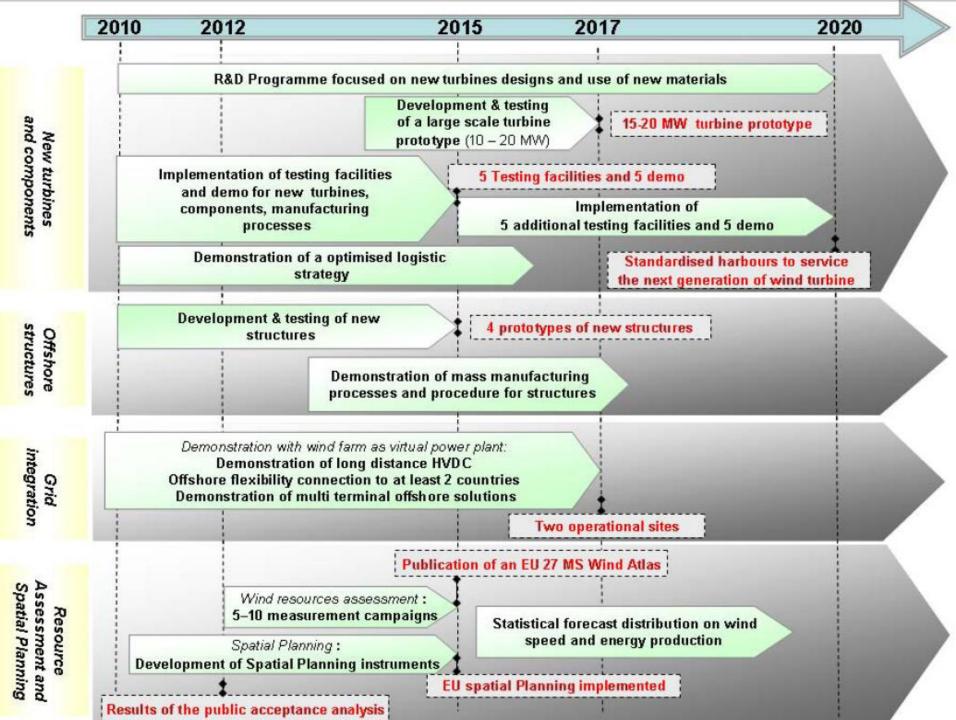
- Grid integration techniques for large-scale penetration of variable electricity supply.
 - To demonstrate the feasibility of balancing power systems with high share of wind power using large-scale storage systems and High Voltage Alternative Current (HVAC) or High Voltage Direct Current (HVDC) interconnections.
 - To investigate wind farms management as "virtual power plants".

Grid integration - Actions

- □ A programme focused on wind farms management as "virtual power plants" to demonstrate at the industrial-scale:
 - Offshore wind farms interconnected to at least two countries and combined with the use of different grid interconnection techniques.
 - Long distance High Voltage Direct Current.
 - Controllable multi-terminal offshore solutions with multiple converters and cable suppliers.

A virtual power plant is a cluster of distributed generation installations which are collectively run by a central control entity in order to increase the system flexibility (including with the support of existing storage systems) and to make the best of available potential (spatial smoothing)

Resource assessment & spatial planning - Objectives


- Resource assessment and spatial planning to support wind energy deployment.
 - To assess and map wind resources across Europe and to reduce forecasting uncertainties of wind energy production.
 - To develop spatial planning methodologies and tools taking into account environmental and social aspects.
 - To address and analyse social acceptance of wind energy projects including promotion of best practices.

Resource assessment & spatial planning - Actions

- A R&D programme for forecasting distribution of wind speeds and energy production that includes:
 - Wind measurement campaigns.
 - Database on wind data, environmental and other constrains.
 - Spatial planning tools and methodologies for improved designs and production.

人」人
European Wind Energy Technology Platform

EWI / Wind Roadmap – 75 % match

EWI component	EWI Action	Roadmap		
Wind conditions	European wind resource map	•		
	Measurement campaigns	<u> </u>		
New generation of on and offshore turbines	Large long-medium term R&D programme			
	Industry-led full-scale European demonstration activities			
	Optimising manufacturing processes	<u> </u>		
	Optimising logistics			
	Cross-industrial cooperation and demonstration program			
Offshore takeoff	Development of offshore access vessels, and best practices			
	Automated manufacturing of steel and concrete substructures of varying designs			
	Sponsorship of demonstration programmes to test innovations in offshore technology			
	Development of onshore facilities supporting offshore deployment			
	Strong coordination with the offshore oil & gas service sector			
Grid Integration	Grid management solutions			
	Long-term planning	•		
	New grid technology solutions			
Deployment	Support schemes	•		
	Long-term spatial planning	<u> </u>		
	Social acceptance of wind energy projects			
Human Resources	A European training institute	20		

Missing elements

Grid planning – coordination with the European Grid Initiative

□ Training – coordination with the European Energy Research Alliance and the European Institute of Technology

Missing:

- Offshore access vessels, and best practices
- Onshore facilities supporting offshore deployment

Indicative costs (2010-2020)

"The overall breakdown of non-nuclear energy research financing in 2007 was 70% private to 30% public. Given the public policy-driven nature of the energy transition and the current economic situation, a significant rise in the public share of the burden in the short term towards a more equal level of commitment would have to be explored." COM(2009) 519 final.

Technology objectives	Costs (M€)		
1. New turbines and components	2 500	 □ R&D investment: 383 M€ (2007) ■ Industry 292 M€ (76%) ■ Public 91M€ (24%) 	
2. Offshore structure-related technologies	1 200		
3. Grid integration	2 100		
		SET-Plan 600M€/y	
 Resource assessment and spatial planning 	200		
Total	6 000		
03-Feb-10		22	

Financing elements – Impact assessment SEC(2009) 1297

□ 4 policy options are compared:

- No action BAU (business as usual)
- increased funding channeled through the existing investment vehicles
- a strengthening of the existing investment vehicles within modified institutional arrangements / specific mandate for the EIB to invest in infrastructural funds / using the Capacity Building Scheme
- new investment vehicles
- Possible sources of funding:
 - ETS system from 2013 onwards, ETS NER, EEPR
 - Research Framework Programmes
 - CIP High Growth and Innovative SME Facility (GIF)
 - EIB: RSFF, Marguerite fund, a new "efficiency and renewables" instrument

Thank you for your attention!

EWEA

THE EUROPEAN WIND ENERGY ASSOCIATION

