

Roadmap exploration: the wind example

If a man does not know what port he is steering for, no wind is favourable

Session summary

Risø DTU

National Laboratory for Sustainable Energy

The roads to a sustainable energy future

- Roadmaps a promising strategic tool to accelerate low carbon technology development:
 - Communication about the key challenges, targets to be set, actions to be made and milestones to reach
 - Coordination of view points from diverse stakeholders
 - Cooperation across private and public sector absolutely necessary
 - Consensus to be reached robust roadmaps are flexible, living documents
 - Commitment to start walk the talk.
- Process as important as the end result
- Iterative loop between roadmaps and implementation

Intelligent combination of Technology RD&D and other support mechanisms

- Broad consensus about the IEA wind roadmap BLUE scenario one of several futures
- From generic, abstract global roadmaps to specific regional roadmaps taking into account local circumstances (and costs)
- Top down priorities vs. bottom up processes led by industry.
 - National vs. global outlook
 - Energy/climate policy vs. national industrial policy
- R&D collaboration in stages closer to the market off shore wind gives good examples (foundations, infrastructure, wind assessment and forecasting, materials, aerodynamics, standards etc.)
- Smooth transition from stage to stage
- Public acceptance, educating the public more knowledge needed
- The role for international RD&D collaboration

From roadmaps to implementation (1)

- Non trivial task to implement roadmaps, once endorsed
- Financing huge resources to be raised in short time
 - Generation during the process when is industry willing to invest?
 - key task to spend money wisely
 - policies and framework conditions play a role (stable policies not stop and go)
 - well functioning innovation systems
- Capabilities and capacity building
 - Capability to develop technologies at the speed foreseen, with the quality and reliability required and at the estimated affordable prices
 - Combination of R&D and mass production
 - Learning from oil and gas industry for off shore wind
 - Capability to adopt technologies for local needs

From roadmap to implementation (2)

- Combination of journeys where risks are to be shared and minimized:
 - Technologies Companies Markets Regulations
- PPP decisive for sharing risks and accelerate technology development and deployment
- IP divergent views:
 - IP sharing vs. IP protection
 - IP vs. accellerating innovation
- R&D input & output metrics
 - Effectiveness, not just expenditures
 - Leverage between public and private funding
 - Carbon saving short and long term
 - Some methodology development needed
- Financial metrics:
 - Technology, warranty and counterparty risk assessment
 - Track records essential

One thing is the nautical chart to understand another thing the vessel to steer

Holberg, 1722

Title of the presentation 21-aug-2008

Risø DTU

National Laboratory for Sustainable Energy

6