

ENABLING THE DIFFUSION OF SUSTAINABLE STEELMAKING

VALENTIN VOGL

CONTENTS

- 1. steel & 1.5 °C
- 2. international co-operation
- 3. enabling factors for low-emission steelmaking
- 4. demand pull for sustainable basic materials

sources: IPCC SR15 (ch.2), http://www.kimnicholas.com/climate-science-101.html

Global total net CO₂ emissions

Billion tonnes of CO₂/yr

A GLOBAL TRANSFORMATION

- Growing steel demand: India, Africa, Latin America
- transforming existing + leapfrogging future demand
- RD&D in Europe, but emissions outside EU
- 'common but differentiated responsibilities'

Figure 3. Final steel demand and old scrap supply by region.

source: Pauliuk, S, Milford, RL, Muller, DB & Allwood, JM 2013, 'The steel scrap age', *Environ Sci Technol*, vol. 47, no. 7, pp. 3448-54.

TL. CO-OPERATION FOR THE STEEL TRANSITION

- national visions & capacity building 1.
 - local enabling conditions
- intl. finance: 2

destruction creative (phase-out emitters) (push, pull & systemic)

- sharing risks, sharing benefits
- 3. demand pull
 - markets for climate-neutral basic materials

3.

wbcsd

world**steel**

GREEN CLIMATE FUND

ENABLERS FOR TECHNOLOGY ADOPTION

 geographical iron ore reserves CO₂ storage sites renewables potential oil/gas/coal/coke 	 innovation system innovative industry access to finance global firms strength of networks 			
 policy context climate targets environmental regulation carbon price 	economic outlook - steel demand outlook - investment conditions	es o min ng large iron ore reserves	 Iarge demand growth in primary steelmaking 	other big steelmaking countries source: mapchart.net

ENABLERS (2)

Electrification

- costs of renewables
- iron ore reserves (export HBI instead of ore)
- experience with direct reduction & EAF
- large iron ore reserves large demand growth in primary steelmaking other big steelmaking

carbon pricepublic acceptance

CCS

- storage sites
- coking coal access

H-DR: EMERGING GLOBAL INNOVATION SYSTEM?

marked countries represent 88% of global steel production

- H-DR... hydrogen direct reduction
- systemic innovation challenge
- knowledge dispersed globally
- innovation system needs to be nurtured

source: mapchart.net

DEMAND PULL FOR 'GREEN' STEEL

Global total net CO₂ emissions Billion tonnes of CO₂/yr 50 In pathways limiting global warming to 1.5°C with no or limited overshoot as well as in pathways with a higher overshoot, CO2 emissions are reduced to net zero globally around 2050. 30 20 10 Four illustrative model pathways -20 2010 2100

- price increase for car/building with climate neutral steel: <1%
- coalition of the willing (Paris Agreement art. 6)
- designed inclusive and expanding over time

based on:

- Vogl V. & Ahman M. (2019). What is green steel? Towards a strategic decision tool for decarbonising EU steel production. paper presented to METEC-ESTAD 2019, Düsseldorf, GER.
- Lösch O., Vogl V., Arens A. (2019). How to get green steel into the market?. paper presented to ECEEE Summer Study 2019, Belambra Presqu'île de Giens, France.

- 1.5 °C means zero emissions globally by 2050
- early action: roadmaps and explicit technology needs
- demand pull for climate-neutral steel \rightarrow unleash creative forces

Valentin Vogl valentin.vogl@miljo.lth.se Lund University – Environmental and Energy Systems Studies http://miljo.lth.se/ @valenvogl

Recent publications:

Vogl, V, Åhman, M & Nilsson, LJ 2018, 'Assessment of hydrogen direct reduction for fossil-free steelmaking', *Journal of Cleaner Production*, vol. 203, pp. 736-45.

Åhman, M, Olsson, O, Vogl, V, Nyqvist, B, Maltais, A, Nilsson, LJ, Hallding, K, Skånberg, K & Nilsson, M 2018, *Hydrogen steelmaking for a low-carbon economy*, Lund.

--- funded under the Swedish Energy Agency under the project HYBRIT-RP1 ---

