

Evaluating energy R&D

Timing and mechanisms of evaluation

Session leader Birte Holst Jørgensen

Risø DTU

National Laboratory for Sustainable Energy

Defining evaluation

- Evaluation is systematic determination of merit, worth, and significance of something or someone using criteria against a set of standards
- Evaluation is the systematic acquisition and assessment of information to provide useful feedback about some object
 - data collection
 - judgement about the validity of data and of the inferences we make about it
 - useful feedback to various audiences

Motivation

Acceleration

 Technology development needed to address the three Es, more than ever!

Accountability

- Who can call for an account and who owes a duty of an explanation:
 - Political
 - Administrative
 - Professional

Some lessons learned from science - Tetlock

How to cope with accountability predicaments:

- 1. Pre-emptive Self-criticism (pre-exposure)
 - motivates people to become more open-minded and flexible
 - but may also lead to undue attention to worst case scenarios, setting weak standards, confusion, vacillation and weakness

2. The Acceptability Heuristic

- motivates people to build a sort of consensus and unanimity and checks a range of judgemental fallacies otherwise not considered
- but may also lead to group thinking and opportunistic behaviour

3. The Rationalisation Heuristic

- motivates people to keep the course of action once taken, rationalising past conduct through defensive bostering
- but may also blinds people not to acknowledge the facts

Looking forward to learn from governments and experts with hands on experiences

Risø DTU

National Laboratory for Sustainable Energy

Wrap up

- Ex-ante (Swedish case; IEA acceleration project)
 - Transformation of the energy system and the strategic role of ERD&D in bringing down Cost of Energy for new technologies
 - Trade off between
 - Risk taking vs demonstrating success in RD&D, especially having the uncertainty in RD&D in mind
 - Intended and unintended behaviourial consequences (Ph.D's, innovations etc.)
 - National focus vs. opportunities for international cooperation
 - RD&D (push) vs. other market support mechanisms (pull), also in terms of expenditure.
 - Strategic holistic approach needed to transform energy systems
 - Diverse roles, perspectives and stakeholders when building consensus on new priorities and design programmes
 - Input and inspiration from other sectors (health, agriculture etc.)
 - RD&D is long term, relevant for energy systems and global markets; it may have huge impact, but it takes time and requires patience.

Wrap up

- In progress: keeping pace in the race (EU and US cases)
- Development and implementation of monitoring systems and tools
 - Step-wise roll-out (pilot, learning or cautious process?)
 - Tailor made data and tools transparency
 - Methodological challenges when measuring impact of public strategic plans on overall policy goals, impact on policies, R&D investments, action progress/performance
 - Requirements for both qualitative and quantitative data and analysis
 - Standardising performance measurements, data collection and use of performance information (feedback)
 - The powerful tool of scoreboards for decision-makers whereas practitioners more interested in using performance information
 - Information sharing is about stable monitoring architecture
 - Systematic linkages in the process from mission to performance
- Technology development and tracking that progress not restricted to one country (or company) – good case for international cooperation!

Wrap up

- Ex-post: Back to the future (Nordic scoreboard, US case and international case)
- The methodological challenges in developing cross-country indicators covering the value chain in its context
- Need for improvements on individual indicators as well as composed indicators, incl. better data on industrial activities, investments, tech transfer, policy framework conditions etc.
- Retrospective and prospective evaluations
 - R&D takes time and requires long term impact assessment
 - Defining and measuring benefits and costs (3 Es) analytically demanding
 - Adapting retrospective methodologies to prospective construct
 - Always uncertainties to take into consideration complex technologies, dynamic markets, changing society
- Systemic evaluations and impact assessment frameworks
 - narrative, indicator, self evaluation and context sensitive approaches

Decalogue I - Kieslowski

- Systematic acquisition and assessment of information to provide useful feedback about some object
 - 3 As acceleration, accountability and advocacy
 - Data collection Validity and reliability
 - Analysis of data equations, models, constructs
 - Use of data, feedback to practicioners (learning and adaptation) and [cautious] implications
 - Simple, accurate and consistent
- Need for improved methodologies, tools and information sharing on what works and what not (and some common sense)