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Storage may have a big impact, but its
future role is perceived as highly uncertain

Problem: Uncertainty on role of storage
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While pumped hydro is the most widely
deployed stationary storage technology

Global installed capacity - 2017

. Flow, PbA, 120
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PHS — Pumped Hydro Storage NaS — Sodium-sulphur Battery
Li-ion — Lithium-ion Battery Flow — Flow Battery
CAES - Compressed Air Energy Storage PbA — Lead-acid Battery

Source: Energy Storage Database, Department of Energy (2017); Global Energy Storage Forecast, 2016-2024, BNEF (2017); https://www.ngk.co.jp/nas/



Investment costs of lithium-ion batteries
have fallen dramatically in recent years

Recent cost developments

Average: 3,000 $/kWh,,,

=

Powerwall 1: 1,100 $/kWh,,,

Powerwall 2: 500 $/kWh,,,

October 2013 April 2015 October 2016
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Sources: Tepper, M. Solarstromspeicher-Preismonitor Deutschland 2016. (Bundesverband Solarwirtschaft e.V. und Intersolar Europe, 2016); 4
www.solarfixni.co.uk/solarpanelsystems/tesla/; www.tesla.com/powerwall




We need a consistent method to project
cost for multiple technologies

Technology

‘ q » Cost analyses are focussed on lithium-ion
/\

* A holistic assessment should cover multiple technologies

Scope
» Cost quotes refer to different technology components

« A transparent analysis should clarify reference scope

Method

ﬂm « Cost projections are made with varying methods

* An objective and consistent method should be chosen

Source: www.flaticon.com



Electricity can be stored in multiple ways
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Cost figures can refer to different scopes
containing not all cost components

@ Technology scope

Cell Consumer electronics 20%

of installed system

Module - -
Pack Electric vehicles 30%
of installed system
System (ex-works) - 65%

of installed system

U ’f’t‘ Installed system Stationary applications 100%

Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017) 7



Experience curves are an objective tool to
model cost reductions for technologies
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The experience curve dataset for storage

technologies...
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e System = Pack ¢ Module a Battery

e Pumped hydro (Utility, -1+8%)
Lead-acid (Multiple, 4+6%)
Lead-acid (Residential, 13+5%)

A Lithium-ion (Electronics, 30+3%)

= Lithium-ion (EV, 18+3%)
Lithium-ion (Residential, 15+4%)

e Lithium-ion (Utility, 16+3%)

= Nickel-metal hydride (HEV, 11+1%)

e Sodium-sulfur (Utility, -)

¢ VVanadium redox-flow (Utility, 11+9%)

= Electrolysis (Utility, 18+6%)

= Fuel Cells (Residential, 18+2%)

Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017) 9



... Shows that battery storage investment
cost will reach cost of pumped hydro

20,000 +

10,000 |

5,000 T

g
z
§ 2,000 |
1,000 |
a Price ranges
o 500 + 1
©
= 125-200
S 200 + 130
o

o
o 100 +
50 j j j j j j j j
0.001 0.01 0.1 1 10 100 1,000 10,000

Cumulative Installed Nominal Capacity (GWh,,)

e System = Pack < Module a Battery

"« Pumped hydro (Utility, -1+8%)

Lead-acid (Multiple, 4+6%)
Lead-acid (Residential, 13+5%)

| A Lithium-ion (Electronics, 30+3%)

= Lithium-ion (EV, 18+3%)
Lithium-ion (Residential, 15+4%)

| e Lithium-ion (Utility, 16+3%)

= Nickel-metal hydride (HEV, 11+1%)

| @ Sodium-sulfur (Utility, -)

¢ VVanadium redox-flow (Utility, 11+9%)

| = Electrolysis (Utility, 18+6%)

= Fuel Cells (Residential, 18+2%)

Source: O. Schmidt, A. Hawkes, A. Gambhir & I. Staffell. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017) 10



Resulting time-based cost projections could
be used to compare technologies, but

Investment cost projection — Time-based
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Electricity storage technologies differ in
many cost and performance parameters

Cost

Performance

Investment cost

Cost to construct technology

Nominal power

Maximum amount of power

overnight (total vs specific) capacity generated
Construction Actual duration of technology Discharge Maximum duration to discharge
time construction duration energy at maximum power

Replacement
cost

Cost to replace technology
components

Nominal / Usable
energy capacity

Maximum amount of energy stored
Usable amount of energy stored

Replacement Time interval at which technology Depth-of- Maximum energy that can be used
interval component replacement is required | discharge without severely damaging the store
O&M cost Cost of operating and maintaining Cycle life Number of full charge-discharge

operability of technology

cycles before end of usable life

Charging cost

Cost for energy to technology with
energy

Calendar life

Number of years before end of
usable life (even at no operation)

Disposal cost / Cost to dispose of the technology at | Degradation Loss in usable energy capacity
Residual value its end-of-life (can be negative)
Discount rate Rate at which future cost / revenues | Round-trip Proportion of energy discharged

of technology are discounted efficiency over energy required to charge store

13




Levelised cost of storage (LCOS) consider
all cost and performance parameters

* Investment cost * Charging cost
» Construction time * O&M cost
* Replacement cost / interval

Investment cost + Operating cost + Disposal cost
LCOS = — ,
MWh Electricity discharged
* Round-trip efficiency « Cycle life * End-of-life cost or
« Depth-of-discharge  + Calendar life residual value
* Annual cycles » Degradation

} The discounted cost of a “"MWh" discharged from the storage device

14



Applications affect storage operation, so
LCOS analysis must be application-specific

Electricity storage applications
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Lithium-ion to become more competitive
than flow batteries for bill management
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Pumped hydro, compressed air and
hydrogen compete for seasonal storage

LCOS - Resource Adequacy (Seasonal)
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Overall, increasing dominance of Lithium-
ion for majority of applications by 2030

Summary

All technologies Excl. PHS & CAES




LCOS analysis also allows analysing
competitiveness of electricity storage

Analysis - Competitiveness

Frequency regulation

Increased PV self-consumption

19



Recent investments in storage to provide
balancing services show that...

Competitiveness - Frequency regulation !

Utility-scale battery capacity
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Source: https://www.energy-storage.news/news/siemens-to-deploy-market-based-grid-balancing-battery-for-german-utility
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... frequency regulation is a business case
for electricity storage
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The market for home storage appears

poised for growth...

Competitiveness - Increased PV self-consumption
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Still, residential batteries are unlikely to
make economic sense in GER before 2030
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Electricity storage can provide multiple
services in parallel, i.e. “benefit-stacking”

Concept
+ Value (%)
cost PV self-
consump-
tion
Source :Own ana lysis.

System
service

End-user

Utility
service

service

Utility
service

System
service

End-user
service

Increased
PV self-
consump-
tion
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Benefit-stacking is a reality for subsidy-free
battery projects in the United Kingdom...
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...through the combination of three
different electricity storage services

Electricity storage applications
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Low-cost policy measures can enable
benefit-stacking

A. Adjust technical standards to open markets for storage technologies
(frequency response: reduce minimum bidding sizes, allow assets operating in dispersed fleets)

B. Amend competition regulation to allow combined value streams
(example: “unbundling” prohibits simultaneous revenues from generation and transmission)

C. Develop consistent legal definition of ‘electricity storage’

to ascertain that storage can serve as generation, transmission/distribution and consumption
support simultaneously

} All three barriers can be removed at low costs

Stephan, A., Battke, B., Beuse, M. D., Clausdeinken, J. H., & Schmidt, T. S. (2016). Limiting the public cost of stationary battery deployment by combining applications. Nature Energy, 27
1(June), 16079.



Summary

1. Investment cost of battery storage technologies will reach cost of
pumped hydro.

2. Levelised cost of storage (LCOS) is the metric to be used to
compare technologies.

3. Lithium-ion will be most cost-effective in most applications except
when long discharge and/or many cycles are required.

4. Electricity storage is expensive, but versatile. Thus, benefit-stacking
is the holy grail to profitability and system benefits.
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Imperial College
London

Questions?

Oliver Schmidt | PhD Researcher in Energy Storage
Grantham Institute - Climate Change and the Environment
Imperial College London, Exhibition Road, London SW7 2AZ
Tel: +44 (0) 7934548736

Email: o.schmidtl5@imperial.ac.uk

Website: www.storage-lab.com

Grantham Institute
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Global storage capacity is again growing
quickly to ensure VRE integration

Non-PHS vs PHS

Globadlly installed non-pumped hydro

electricity storage (GW)
40 250

Clobally installed electricity storage (GW)

35

200
30
g 20

15 100
1.0

50

0.0 - -

2011 2014

2016 2020 2025
m non-PHS Storage  m Pumped Hydropower Storage

Positive market and policy trends supported annual growth of over 50% for non-
pumped hydro storage. Near-term storage needs will remain answered by PHS.

Source: Tracking Clean Energy Progress 2017. International Energy Agency (2017).
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Non-PHS capacity growth will mostly be
required to integrate self-generated PV

Medium-term outlook for non-PHS storage - Power
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Source: Global Energy Storage Forecast, 2016-2024, BNEF (2017)
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Application requirements can be met by
different energy storage technologies

Applications vs Technologies

Applications Technology Siting
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New technologies are constantly being
developed

A




Raw material costs suggest that these cost
projections are not infeasible

Sanity Check - Raw material cost

100 -

Raw Material Cost (US$,0;,/kWh,,)
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e System = Pack < Module a Battery

|« Pumped hydro (Utility, -1+8%)

Lead-acid (Multiple, 4+6%)
Lead-acid (Residential, 13+5%)

1 aLithium-ion (Electronics, 30+3%)

= Lithium-ion (EV, 18+3%)
Lithium-ion (Residential, 15+4%)

| e Lithium-ion (Utility, 16+3%)

= Nickel-metal hydride (HEV, 11+1%)

| e Sodium-sulfur (Utility, -)

¢ VVanadium redox-flow (Utility, 11+9%)

1 = Electrolysis (Utility, 18+6%)
.= Fuel Cells (Residential, 18+2%)
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However, experience rates of immature
technologies can be highly uncertain
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Storage materials — reserve base

(A) Annual production ESP / TWh (B) Reserve base ESP / TWh
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ESOI of different storage technologies
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Application-specific LCOS account for all
relevant cost and performance parameters

$
LCOS |—=——| =
[MWh
Capexp
Capex + ), A+ R
1+ Deg)™
#cycles x DoD * Cpom_e * Ngr * ZTILl( 1+ T')gn)
N Opex
n=1 (1 + r)n+T
+
1+ Deg)™
#CyCleS * DoD Cnom_e * Nrr * Zg:l ( (1 + T')gn)
Disposal
N (14 r)N+t
1+ Deg)™
#CyCleS * DoD Cnom_e * Nrr * 25:1 ( (1 + T)gr?
P
+ el
NRT

Capex:
Capex:
Opex:
Disposal:
P

r:
Cnom_e:
DoD:

N:
#cycles:
Deg:

AR

Investment cost ($)
Replacement cost ($)
Operating cost ($)
Disposal cost ($)

Power cost ($/kWhel)
Discount rate (%)
Nominal capacity (MWh)
Depth-of-discharge (%)
Lifetime (years)

Full cycles per year (#)
Annual degradation (%)
Period (year)
Replacement interval (years)
Replacement number (#)
Construction time (years)

Note: Construction time and self-discharge not explicitly
considered for simplification; these parameters affect capex
and period, and discharged energy respectively.
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Energy storage technologies contain a
number of components

Physical Energy Storage System

Battery System

SM BOS PCS

|
|
|
|
|
L

Storage Modules

Source: Lazard's Levelized Cost of Storage Analysis 2017

|
|
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: SM Storage Module
!

DC

Balance of

1ot System

Power
PCS Conversion
System

Engineering,
EPC Procurement &
Construction

Other (not included in
analysis)

Selected Equipment & Cost Components

Racking Frame/Cabinet
Battery Management System (“BMS")
Battery Modules

Container

Monitors and Controls
Thermal Management
Fire Suppression

Inverter
Protection (Switches, Breakers, efc.)
Energy Management System (“EMS")

Project Management
Engineering Studies/Permitting
Site Preparation/Construction
Foundation/Mounting
Commissioning

SCADA

Shipping

Grid Integration Equipment
Metering

Land
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Modelled applications cover entire
spectrum of performance requirements
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LCOS and technology dominance in
modelled electricity storage applications

Overview 1
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LCOS and technology dominance in

modelled electricity storage applications

Overview 2

Seasonal storage
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Power reliability
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Peaker replacement
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Secondary response
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