Imperial College London

Future cost of electricity storage and impact on competitiveness

Oliver Schmidt

28 June 2018 | EU4Energy Policy Forum Karven 4 Seasons Resort, Sary-Oi, Kyrgyzstan

Storage may have a big impact, but its future role is perceived as highly uncertain

Problem: Uncertainty on role of storage

While pumped hydro is the most widely deployed stationary storage technology

Global installed capacity - 2017

PHS – Pumped Hydro Storage Li-ion – Lithium-ion Battery

CAES – Compressed Air Energy Storage

NaS – Sodium-sulphur Battery

Flow – Flow Battery

PbA – Lead-acid Battery

Investment costs of lithium-ion batteries have fallen dramatically in recent years

Recent cost developments

Average: 3,000 \$/kWh_{cap}

October 2013

Powerwall 1: 1,100 \$/kWh_{cap}

April 2015

October 2016

We need a consistent method to project cost for multiple technologies

Approach

Technology

- Cost analyses are focussed on lithium-ion
- A holistic assessment should cover multiple technologies

Scope

- Cost quotes refer to different technology components
- A transparent analysis should clarify reference scope

Method

- Cost projections are made with varying methods
- An objective and consistent method should be chosen

Electricity can be stored in multiple ways

Mechanical

Cost figures can refer to different scopes containing not all cost components

\Box	

Technology scope

Experience curves are an objective tool to model cost reductions for technologies

The experience curve dataset for storage technologies...

Dataset

... shows that battery storage investment cost will reach cost of pumped hydro

Investment cost projection – Capacity-based

Resulting time-based cost projections could be used to compare technologies, but

Investment cost projection – Time-based

Apple ≠ Orange

Electricity storage technologies differ in many cost and performance parameters

Cost and performance parameters

Cost		Performance			
Investment cost	Cost to construct technology overnight (total vs specific)	Nominal power capacity	Maximum amount of power generated		
Construction time	Actual duration of technology construction	Discharge duration	Maximum duration to discharge energy at maximum power		
Replacement cost	Cost to replace technology components	Nominal / Usable energy capacity	Maximum amount of energy stored Usable amount of energy stored		
Replacement interval	Time interval at which technology component replacement is required	Depth-of- discharge	Maximum energy that can be used without severely damaging the store		
O&M cost	Cost of operating and maintaining operability of technology	Cycle life	Number of full charge-discharge cycles before end of usable life		
Charging cost	Cost for energy to technology with energy	Calendar life	Number of years before end of usable life (even at no operation)		
Disposal cost / Residual value	Cost to dispose of the technology at its end-of-life (can be negative)	Degradation	Loss in usable energy capacity		
Discount rate	Rate at which future cost / revenues of technology are discounted	Round-trip efficiency	Proportion of energy discharged over energy required to charge store		

Levelised cost of storage (LCOS) consider all cost and performance parameters

LCOS Formula

- Investment cost
- Construction time
- Replacement cost / interval
- Charging cost
- O&M cost

$$LCOS\left[\frac{\$}{MWh}\right] = \frac{Investment\ cost\ +\ Operating\ cost\ +\ Disposal\ cost}{Electricity\ discharged}$$

- Round-trip efficiency
- Cycle life
- Depth-of-discharge
- Calendar life
- Annual cycles
- Degradation

End-of-life cost or residual value

The discounted cost of a "MWh" discharged from the storage device

Applications affect storage operation, so LCOS analysis must be application-specific

Electricity storage applications Energy Backup Power Arbitrage Spin / Non-Spin Increased Reserve PV Self-Consumption Frequency Regulation Demand Service not Charge possible Voltage Reduction Support Service not Time-of-Use Start CENTRALIZED Management **TRANSMISSION** Distribution **DISTRIBUTION** Resource Deferral Adequacy **BEHIND THE METER** Transmission Transmission Congestion Relief DISTRIBUTED UTILITY SERVICES

Lithium-ion to become more competitive than flow batteries for bill management

LCOS – Bill Management

Power Capacity	1 MW
Discharge duration	4 hours
Annual cycles	500
Charging cost	100 \$/MWh

Pumped hydro, compressed air and hydrogen compete for seasonal storage

LCOS – Resource Adequacy (Seasonal)

Power Capacity	1,000 MW
Discharge duration	700 hours
Annual cycles	3
Charging cost	50 \$/MWh

Overall, increasing dominance of Lithium-ion for majority of applications by 2030

Summary

All technologies

015

Cycles p.a.

Excl. PHS & CAES

4.00		Lead	Lead	Lead	VRFB	VRFB		
2.00 1.00		Lead Lead	Lead Lead	Lead Lead	VRFB VRFB	VRFB VRFB		
0.50		NaS	NaS	NaS	NaS		Flywheel	
0.25	NaS	NaS	NaS	NaS	NaS	NaS	Flywheel	Flywheel
	1	10	50	100	500	1000	5000	10000

Cycles p.a.

5	700.00	PHS	PHS						
duration 's)	8.00	CAES	CAES	PHS	PHS	PHS			
dur s)	4.00	CAES	CAES	CAES	PHS	PHS	PHS		
arge (hour	2.00	CAES	CAES	CAES	CAES	PHS	PHS		
Discharge (hou	1.00	CAES	CAES	CAES	CAES	PHS	PHS		_
<u>sc</u>	0.50	NaS	NaS	NaS	NaS	VRFB	PHS	PHS	
Δ	0.25	NaS	NaS	NaS	NaS	NaS	NaS	Flywheel	Flywheel
		1	10	50	100	500	1000	5000	10000

Cycles p.a.

		0						
	1	10	50	100	500	1000	5000	10000
0.25	NaS	NaS	NaS	NaS	NaS	NaS	Flywheel	Flywheel
0.50	NaS	NaS	NaS	NaS	VRFB	VRFB	Flywheel	
1.00	NaS	NaS	NaS	NaS	VRFB	VRFB		
2.00	NaS	NaS	NaS	NaS	VRFB	VRFB		
4.00	Lithium	Lithium	Lithium	Lithium	VRFB	VRFB		
8.00	Lithium	Lithium	Lithium	Lithium	VRFB		_	
700.00	H2	H2						

Cycles p.a.

Ē	700.00	PHS	PHS						
Discharge duration (hours)	8.00	CAES	CAES	PHS	PHS	PHS		_	
dur s)	4.00	Lithium	Lithium	Lithium	Lithium	PHS	PHS		
ge	2.00	Lithium	Lithium	Lithium	Lithium	VRFB	PHS		
har C	1.00	Lithium	Lithium	Lithium	Lithium	Lithium	VRFB		
isc	0.50	Lithium							
Δ	0.25	Lithium	Lithium	Lithium	Lithium	Lithium	Lithium	Flywheel	Flywheel
		1	10	50	100	500	1000	5000	10000

Cycles p.a.

700.00	H2	H2							
8.00	Lithium	Lithium	Lithium	Lithium	VRFB		_		
4.00	Lithium	Lithium	Lithium	Lithium	VRFB	VRFB			
2.00	Lithium	Lithium	Lithium	Lithium	VRFB	VRFB			
1.00	Lithium	Lithium	Lithium	Lithium	Lithium	VRFB			
0.50	Lithium								
0.25	Lithium	Lithium	Lithium	Lithium	Lithium	Lithium	Flywheel	Flywheel	
	1	10	50	100	500	1000	5000	10000	

Cycles p.a.

LCOS analysis also allows analysing competitiveness of electricity storage

Analysis – Competitiveness

Frequency regulation

Increased PV self-consumption

Recent investments in storage to provide balancing services show that...

Competitiveness – Frequency regulation

Siemens to deploy market-based grid balancing battery for German utility

... frequency regulation is a business case for electricity storage

Competitiveness – Frequency regulation

The market for home storage appears poised for growth...

Competitiveness – Increased PV self-consumption

Still, residential batteries are unlikely to make economic sense in GER before 2030

Competitiveness – Increased PV self-consumption

Electricity storage can provide multiple services in parallel, i.e. "benefit-stacking"

Concept

Source: Own analysis.

Benefit-stacking is a reality for subsidy-free battery projects in the United Kingdom...

Benefit-stacking in the UK

Source: Own analysis.

...through the combination of three different electricity storage services

Source: The Economics of Battery Storage, RMI, 2015

Low-cost policy measures can enable benefit-stacking

Policy measures

- A. Adjust technical standards to open markets for storage technologies (frequency response: reduce minimum bidding sizes, allow assets operating in dispersed fleets)
- B. Amend competition regulation to allow combined value streams (example: "unbundling" prohibits simultaneous revenues from generation and transmission)
- C. Develop consistent legal definition of 'electricity storage' to ascertain that storage can serve as generation, transmission/distribution and consumption support simultaneously

All three barriers can be removed at low costs

Summary

Key messages

- 1. Investment cost of battery storage technologies will reach cost of pumped hydro.
- 2. Levelised cost of storage (LCOS) is the metric to be used to compare technologies.
- 3. Lithium-ion will be most cost-effective in most applications except when long discharge and/or many cycles are required.
- 4. Electricity storage is expensive, but versatile. Thus, benefit-stacking is the holy grail to profitability and system benefits.

Questions?

Oliver Schmidt | PhD Researcher in Energy Storage

Grantham Institute - Climate Change and the Environment

Imperial College London, Exhibition Road, London SW7 2AZ

Tel: +44 (0) 7934548736

Email: <u>o.schmidt15@imperial.ac.uk</u> Website: <u>www.storage-lab.com</u>

Global storage capacity is again growing quickly to ensure VRE integration

Non-PHS vs PHS

Positive market and policy trends supported annual growth of over 50% for non-pumped hydro storage. Near-term storage needs will remain answered by PHS.

Non-PHS capacity growth will mostly be required to integrate self-generated PV

Medium-term outlook for non-PHS storage - Power

Application requirements can be met by different energy storage technologies

Applications vs Technologies

New technologies are constantly being developed

Technologies

Raw material costs suggest that these cost projections are not infeasible

Sanity Check – Raw material cost

- System Pack Module ▲ Battery
- Pumped hydro (Utility, -1±8%)
- Lead-acid (Multiple, 4±6%)
- Lead-acid (Residential, 13±5%)
- ▲ Lithium-ion (Electronics, 30±3%)
- Lithium-ion (EV, 18±3%)
- Lithium-ion (Residential, 15±4%)
- Lithium-ion (Utility, 16±3%)
- Nickel-metal hydride (HEV, 11±1%)
- Sodium-sulfur (Utility, -)
- Vanadium redox-flow (Utility, 11±9%)
- Electrolysis (Utility, 18±6%)
- Fuel Cells (Residential, 18±2%)

However, experience rates of immature technologies can be highly uncertain

Storage materials – reserve base

Source: Own analysis

ESOI of different storage technologies

Application-specific LCOS account for all relevant cost and performance parameters

Formula

$$LCOS\left[\frac{\$}{MWh}\right] =$$

$$\frac{\mathit{Capex} + \sum \frac{\mathit{Capex}_R}{(1+r)^{R*T_r}}}{\#\mathit{cycles} * \mathit{DoD} * \mathit{C}_{nom_e} * \eta_{RT} * \sum_{n=1}^{N} \frac{(1+\mathit{Deg})^n}{(1+r)^n}}$$

$$+ \frac{\sum_{n=1}^{N} \frac{Opex}{(1+r)^{n+T}}}{\#cycles * DoD * C_{nom_e} * \eta_{RT} * \sum_{n=1}^{N} \frac{(1+Deg)^{n}}{(1+r)^{n}} }$$

$$+ \frac{\frac{Disposal}{(1+r)^{N+1}}}{\#cycles*DoD*C_{nom_e}*\eta_{RT}*\sum_{n=1}^{N}\frac{(1+Deg)^n}{(1+r)^n}}$$

$$+\frac{P_{el}}{\eta_{RT}}$$

Capex: Investment cost (\$)
Capex_r: Replacement cost (\$)
Opex: Operating cost (\$)
Disposal: Disposal cost (\$)
P_{el}: Power cost (\$/kWhel)

r: Discount rate (%)

C_{nom_e}: Nominal capacity (MWh)
DoD: Depth-of-discharge (%)

N: Lifetime (years)

#cycles: Full cycles per year (#)
Deg: Annual degradation (%)

n: Period (year)

T_r: Replacement interval (years) R: Replacement number (#)

R: Replacement number (#)
T_c Construction time (years)

Note: Construction time and self-discharge not explicitly considered for simplification; these parameters affect capex and period, and discharged energy respectively.

Energy storage technologies contain a number of components

Technology components

Physical Energy Storage System

Selected Equipment & Cost Components

System	ı Layer	Component
SM	Storage Module	Racking Frame/CabinetBattery Management System ("BMS")Battery Modules
BOS	Balance of System	ContainerMonitors and ControlsThermal ManagementFire Suppression
PCS	Power Conversion System	 Inverter Protection (Switches, Breakers, etc.) Energy Management System ("EMS")
EPC	Engineering, Procurement & Construction	 Project Management Engineering Studies/Permitting Site Preparation/Construction Foundation/Mounting Commissioning
Other	not included in analysis)	SCADAShippingGrid Integration EquipmentMeteringLand

Modelled applications cover entire spectrum of performance requirements

Applications – Detail

LCOS and technology dominance in modelled electricity storage applications

LCOS and technology dominance in modelled electricity storage applications

Overview 2

