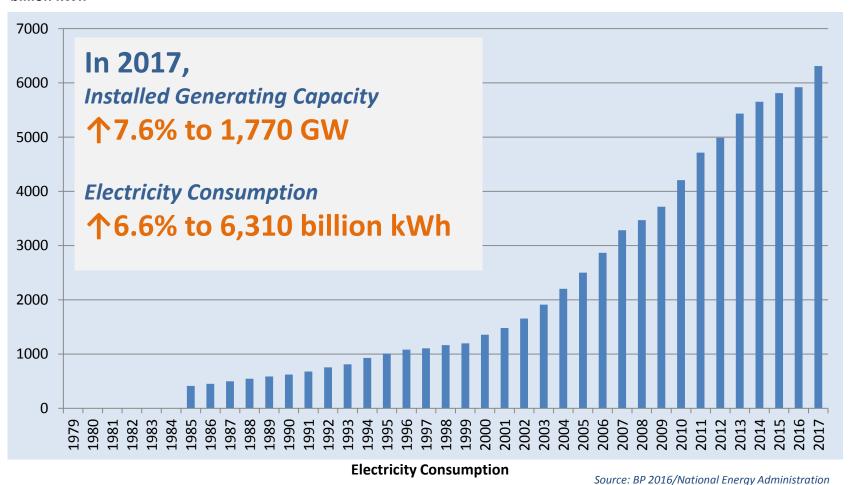


Nuclear Power in China

Mr TANG Chi Cheung Senior Director – Nuclear CLP Holdings Limited

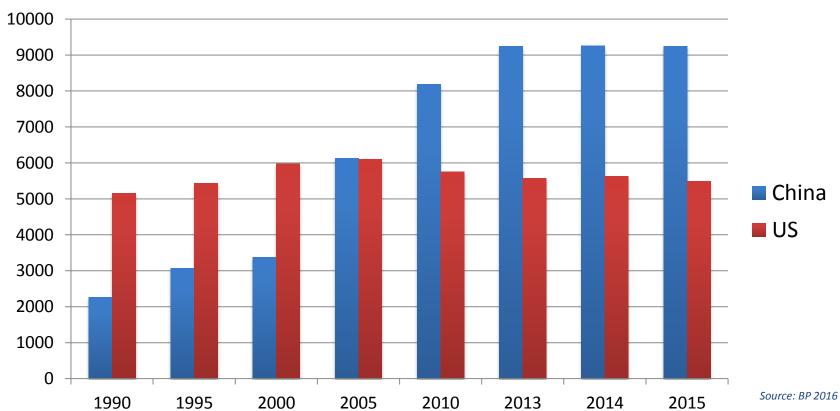
15 June 2018


Nuclear Power in China | Agenda

- Background
- Energy Policy of China
- The Nuclear Roadmap
 - From Import to Export
 - Nuclear Fuel Cycle
 - Public Acceptance Post Fukushima
 - Future Outlook
- Nuclear Import of Hong Kong
- Q&A

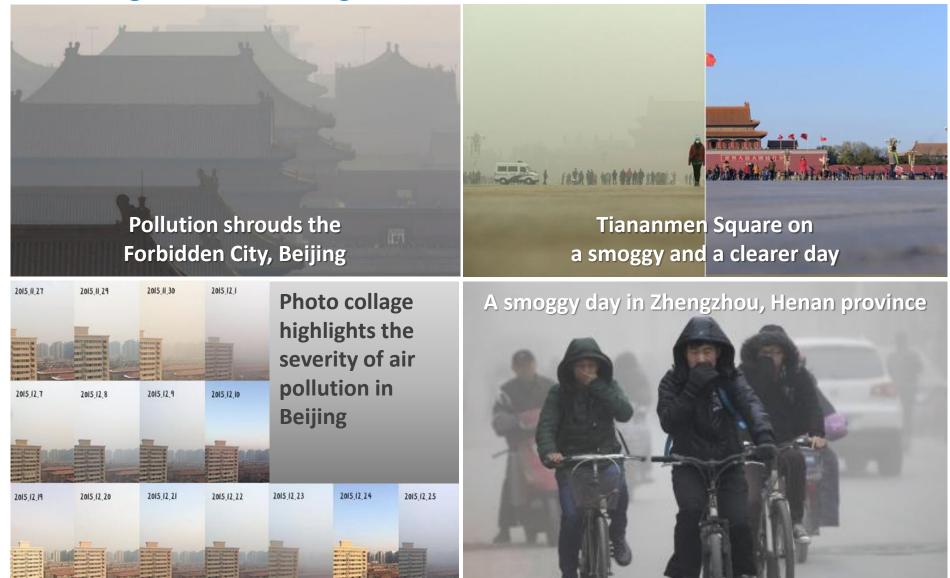
Background I Ever Growing Electricity Demand in China

billion kWh


Background I Greenhouse Gas Emissions

China, the world's no. 2 economy, is also the largest CO₂ emitter in the world despite of a levelling-off in recent years

US EIA 2030 Projection


China 11,700 million tonnes
US 7,700 million tonnes

M tonnes of CO₂

Background I Pressing Problem of Air Pollution

Background I China's Commitments in Combating Climate Change

COP22

Following the COP21 conference in Paris, COP22 agreed to take further actions and investment towards a low carbon, resilient and sustainable future

Consensus Achieved...

Target to keep global temperature rise this century to well below 2°C relative to pre-industrial levels and to drive efforts to limit it to 1.5°C

China's Commitments:

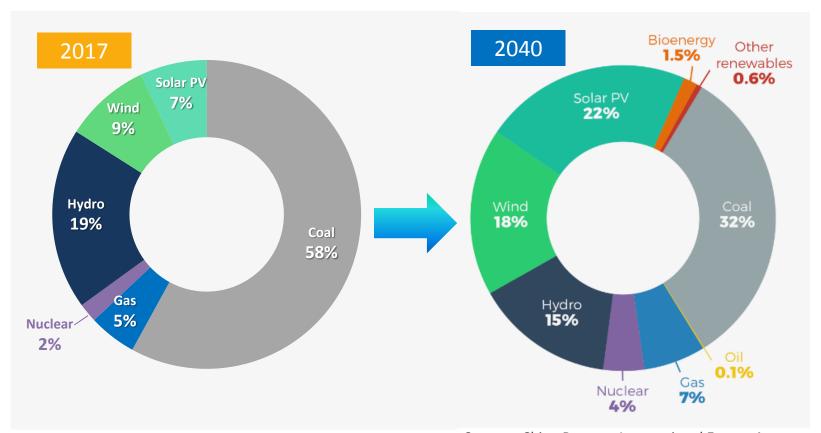
- Early ratification of the Paris Agreement to cut CO₂ emissions per unit GDP by 60%-65% from the 2005 level by 2030
- Pledged that its CO₂ emissions would peak "around 2030"

Energy Policy of China I Towards a Decarbonised Future

The 13th Five-year Plan (2016-2020) laid out the core objectives for China energy policy:

- Reduce CO₂ emissions per unit of GDP by 18% from 2015 levels by 2020
- Increase share of non-fossil energy in total primary energy consumption to 15% by 2020 and to 20% by 2030 (from 9.8% in 2013)

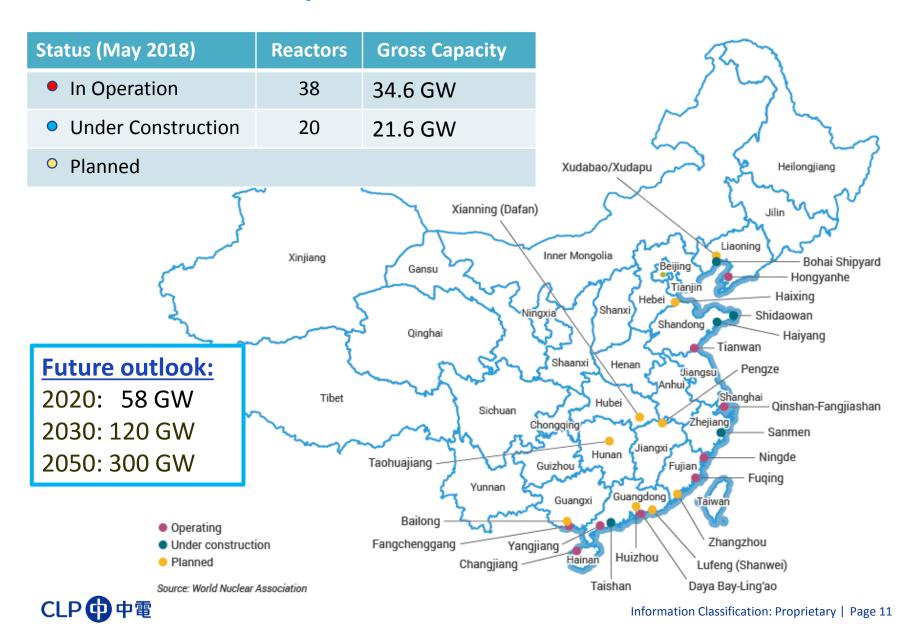
Major focuses on Nuclear Power Development


- Further develop advanced generation III nuclear power projects in coastal regions with the latest safety standards
- Continue to evaluate inland nuclear power projects
- Feasibility studies of commercial reprocessing plants
- Strengthen the fuel security system

Energy Policy of China I Towards a Decarbonised Future

Announced target for nuclear by 2020: 58 GW in operation and 30 GW under construction

<u>Installed Power Generation Capacity in China</u>



The Nuclear Roadmap | Distribution of Nuclear Power Stations

The Nuclear Roadmap | China's Reactors as at May 2018

<u>Nuclear site</u>	<u>Province</u>	<u>Technology</u>
Hongyanhe	Liaoning	4 x CPR1000 & 2 x ACPR1000 (M310)
Haiyang	Shandong	2 x AP1000
Shidaowan	Shandong	1 x HTGR (Rongcheng: 2 x CAP1400)
Tianwan	Jiangsu	2 x VVER + 2 x ACP1000 (M310)
Qinshan 1	Zhejiang	1 x CNP300
Qinshan 2	Zhejiang	4 x CNP600
Qinshan 3	Zhejiang	2 x CANDU
Fangjiashan	Zhejiang	2 x CNP1000 (M310)
Sanmen	Zhejiang	2 x AP1000
Ningde	Fujian	4 x CPR1000 (M310)
Fuqing	Fujian	4 x CNP1000 + 2 x HPR1000
Daya Bay	Guangdong	2 x M310
Lingao	Guangdong	2 x M310 + 2 x CPR1000
Taishan	Guangdong	2 x EPR
Yangjiang	Guangdong	4 x CPR1000 + 2 x ACPR1000
Fangchenggang	Guangxi	2 x CPR1000 + 2 x HPR1000
Changjiang	Hainan	2 x CNP600

The Nuclear Roadmap | The 3 Nuclear Power Groups in China

1. China National Nuclear Corporation (CNNC)

Reactor Models: CNP, VVER, CANDU, AP, Hualong China General Nuclear Power Corporation (CGN)

Reactor Models: CPR, EPR, Hualong

3. State Power Investment Corporation (SPIC)

Reactor Models: AP, CAP1400

(SNPTC)

The Nuclear Roadmap I Three Stages of Development

- 1st stage: Rolling Development (early 1980s to mid 2000s)
 - Qinshan I (CNNC): 1xCNP300 locally developed technology
 - Oinshan II 2xCNP600
 - → Qinshan III 2xCANDU from Canada
 - Daya Bay: 2xM310 imported from Framatome, France
 - o → Lingao
- 2nd stage: Active Development (late 2000s to 2011 Fukushima)
 - 6-8 units a year
 - CPR or CNP (improved M310)
 - AP1000 + EPR + VVER
- 3rd stage: Safe and High Efficient Development (post-Fukushima)
 - Legacy G2+ projects only

The Nuclear Roadmap | Generation 3 Technology

- Import of G3 technology from US/France in 2009 (AP1000/EPR)
 - Fuel loading at Taishan EPR and Sanmen AP1000 reactor in April 2018
- VVER from Russia at Tianwan, Jiangsu
- G3 technology at highest safety level since 2012 (post Fukushima)
- Domestic G3 design: Hualong 1(HPR1000) and CAP1400

The Nuclear Roadmap | Nuclear Export

- Over 50 operable nuclear reactors in the country by 2020
- Become largely self-sufficient in reactor design and construction, as well as other aspects of the fuel cycle, but is making full use of imported technology with adaptation and improvement

'Go Global'

- Export nuclear technology including heavy components in the supply chain
- Over 40 countries along the Belt and Road have been or are planning to develop nuclear power

Hualong 1: HPR1000, China's first indigenous G3 nuclear reactor design

The Nuclear Roadmap | Advanced Reactors for the Future

High **Temperature** Reactor

- One demonstration unit being built at Shidaowan (210 MW) – commissioning in 2019(?)
- Reactor composed of graphite "pebbles" containing enriched uranium
- Helium cooled under pressure at high temperature (>700°C)
- Effective reactor cooling after shutdown, even by natural circulation

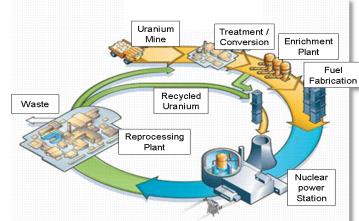
10MW High Temperature Reactor at Beijing Tsinghua University

Photo: Ministry of Science and Technology, PRC

Fast Neutron Reactor

- One experimental reactor built and tested at Beijing (25 MW)
- Enriched uranium (>20%) as fuel and liquid sodium for effective cooling
- Xiapu project (600MW) in Fujian commenced construction in end 2017 and expected COD in 2023

Photo: China Nuclear E&C Group



The Nuclear Roadmap | Nuclear Fuel Cycle

- Uranium
 - Overseas sources
 - ✓ Long-term contracts
 - ✓ Joint ventures in Kazakhstan
 - Husab mine in Namibia
 - Stockpiling

- Conversion and enrichment facilities localised
- Fuel fabrication
 - Local facilities
 - Possible cooperation with Kazakhstan in future
- Spent fuel reprocessing
 - 50/60t demo plant in Gansu
 - Drawn out discussion with France on 800t commercial plant

The Nuclear Roadmap | Public Acceptance – Post Fukushima

- Development of inland projects suspended
 - Running out of coastal sites
 - Six units, may be more, for each existing site
 (Tianwan: 6xVVER + 2 ACP1000)
- New fuel complex in Jiangmen Guangdong cancelled
 - Conversion, enrichment and fabrication
- Spent fuel plant in Lianyungang Jiangsu suspended
- Waste repository sites
 - Regional

Anti-nuclear protest in Jiangmen, Guangdong in 2013

Anti-nuclear protest in Lianyungang, Jiangsu in 2016

The Nuclear Roadmap | Future Outlook

Official target by 2020

58 GW in operation and 30 GW under construction: UNLIKELY

Resume approval of new builds

- Commercial operation date (COD) of Sanmen 1
 - ✓ CAP1000 projects: Lufeng x 2 + Xudapu x 2 + Haiyang II x 2
 - ✓ CAP1400: Rongcheng x 2
- Hualong One?
- 6 to 8 units/year

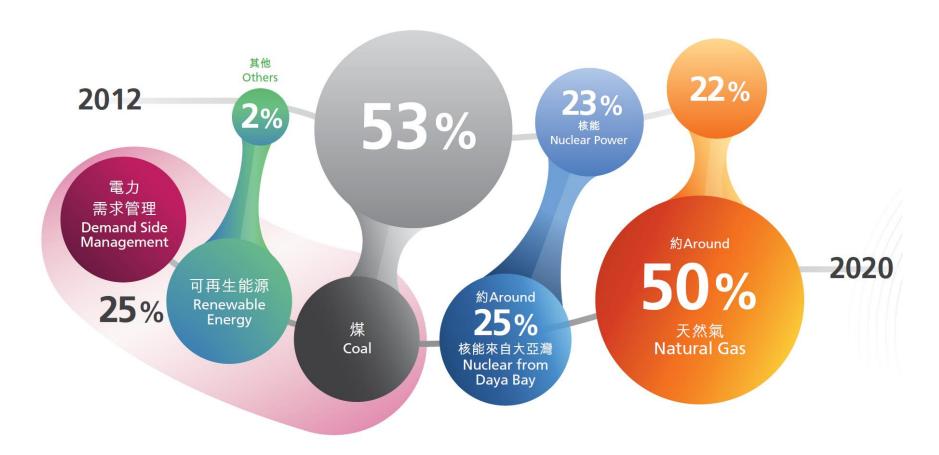
By 2030

- 140 to 180 GW?
- Hualong One for export
 - COD of pilot units by 2021/22
 - Generic Design Assessment in UK by 2021/2022 → Bradwell B by mid-2020s
- CAP1400 for export
 - COD of Rongcheng units by mid 2020s

Photo: World Nuclear Association

3 NUCLEAR IMPORT OF HONG KONG

Nuclear Import of Hong Kong I Daya Bay Nuclear Power Station



- Daya Bay Nuclear Power Station is the first and the largest foreign investment since the launch of Open-door Policy in late 1970s/early 1980s
- Since 1994, nuclear power from Daya Bay has been safely supplying about 25% of Hong Kong's electricity needs with excellent safety performance
- Daya Bay produces around 14 billion kWh of electricity per year, of which 80% is exported to Hong Kong
- Nuclear power forms the base-load portion of our electricity supply at very competitive price
- Import of nuclear power from Daya Bay avoids 7.5 million tonnes of CO₂ emissions each year, equivalent to planting a woodland area of 1/5 size of Hong Kong every year

Nuclear Import of Hong Kong I Future Fuel Mix


 Nuclear import will continue to account for around 25% of the total fuel mix for electricity generation in 2020

