

Contents

- Introduction / project overview
 Nuclear power in the APEC region
- Future scenarios and analysis

 Economic modelling and analysis through 2040

 We discuss three cases: the BAU, High-nuclear and Low-nuclear scenarios
- Conclusion

Asia-Pacific Economic Cooperation (APEC): 21 economies, accounting for 60% of global generation

APEC Economies (total 21)

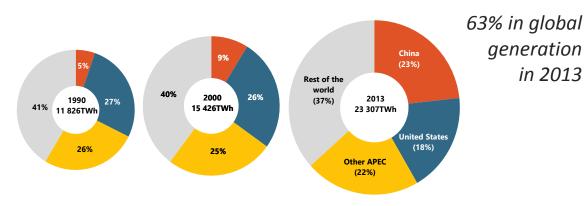
Australia Brunei Darussalam

Canada Chile

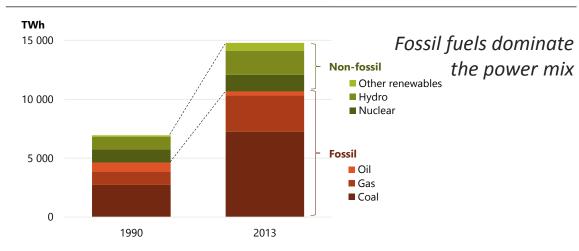
China Hong Kong, China

Indonesia Japan Republic of Korea Malaysia

Mexico New Zealand

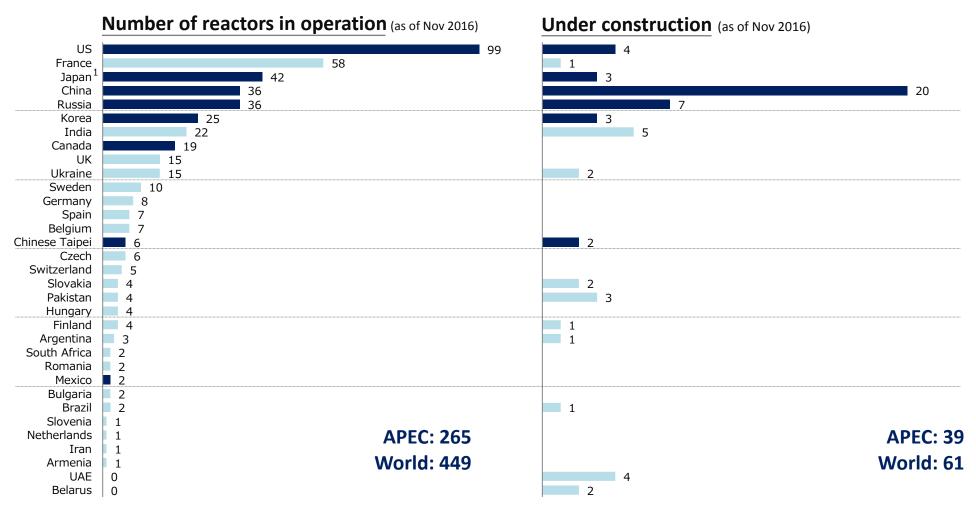

Papua New Guinea Peru Philippines Russia

Singapore Chinese Taipei Thailand United States


Viet Nam

Sources: IEA statistics, APEC Energy Working Group.

Share of APEC in global generation


Fossil vs non-fossil in APEC

1. Introduction / project overview

Major nuclear utilizing/expanding economies are in APEC

^{1.} We refer to IAEA PRIS database. We adjusted data in several economies; for example, in Japan, Ikata unit 1 is excluded from the figure in operation, and the number of reactors under construction is revised from 2 to 3.

1. Introduction / project overview However, future direction varies by economy and uncertainties exist

Nuclear plans and targets, selected economies

China	Target by 2020: 58GW in operation and 30GW under construction	
Japan	Amended reactor regulation acts to limit lifetime of reactors, yet the government aims for a share of 20-22% in generation by FY2030.	
Korea ¹	Addition of 4 reactors which are currently under construction (Shin-Kori 4&5, Shin-Wolseong 1&2) and retirement of 12 reactors by 2040, as outlined in the 8 th Basic Plan for Long-Term Electricity Supply published by MOTIE.	
Chinese Taipei	Nuclear phase out policy by 2025	
Russia	Rosatom plans to expand nuclear mainly in the west part of Russia	
United States	NRC is preparing guidance for an 80-year lifetime (Subsequent License Renewal)	

"Newcomers" Thailand: PDP2015 plans to install 2GW by 2036.

Viet Nam: Halt to Ninh Thuan project.

^{1.} This study was conducted in 2017 before the announcement of the 8th Basic Plan for Long-Term Electricity Supply.

Contents

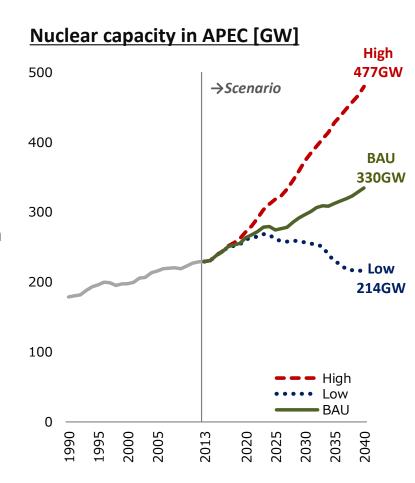
- Introduction / project overview
- Future scenarios and analysis

 Economic modelling and analysis toward 2040

 We discuss three cases: the BAU, High-nuclear and Low-nuclear scenarios
- Conclusion

Three scenarios to discuss the future of nuclear in Asia-Pacific

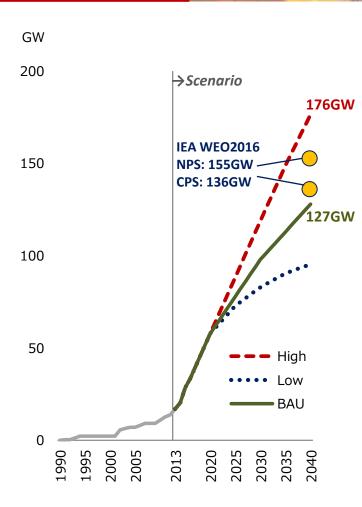
Business-As-Usual (BAU)


Current policy exists over the projection period (2013-2040). Recent nuclear construction/retirement trends considered. Proposed projects are not included in most of the economies.

High-nuclear (High)

Proposed projects are included in addition to BAU projects driven by energy security, environmental and economic reasons. License extensions applied to most of the existing reactors.

Low-nuclear (Low)


Slow down of nuclear developments and accelerated retirements of existing reactors due to various concerns, including safety and waste management.

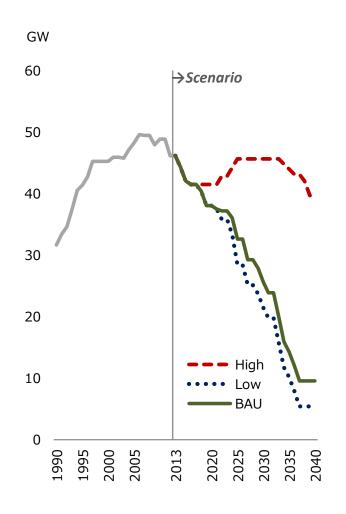
Example of economy assumption

China – projected to be the largest nuclear economy in APEC

Current status (as of 1st Nov 2016)

- 36 reactors in operation
- **176GW** 20 reactors under construction
 - Target: 58GW in operation and 30GW under construction by 2020 ("Energy Development Strategy Action Plan (2014-2020)" and The 13th Five-Year Plan)

Scenario assumptions


	2020 operation target (58GW)	New additions after 2020
High	Achieved	5-6 reactors/year (projected trend in the late 2010s continues)
BAU	Achieved	3-4 reactors/year (The annual average number of reactors installed in 2012-2016 Sep.: 4 reactors/year)
Low	Achieved	1-3 reactors/year

Sources: IAEA, State Council.

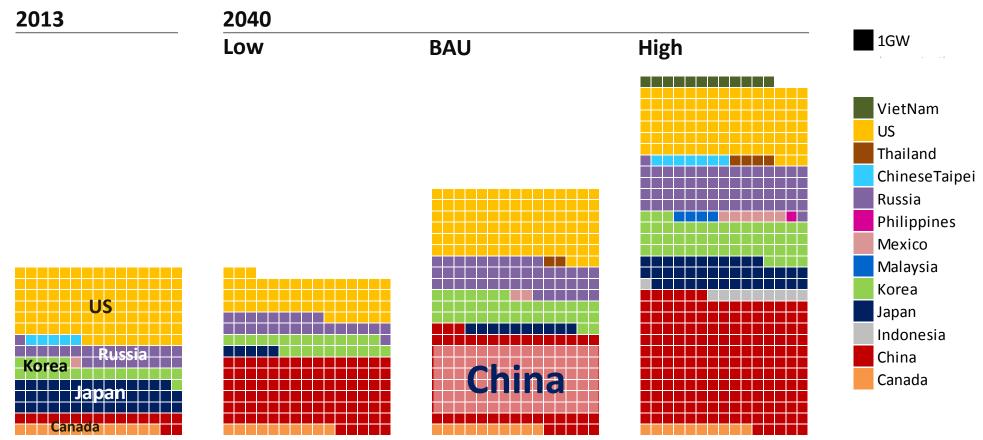
Example of economy assumption

Japan – license expiration of existing reactors has significant impacts

Current status (as of 1st Nov 2016)

- 42 reactors in operation
- 3 reactors under construction (Shimane-3, Oma-1, and Higashidori-1)
- Lifetime: 40 years, and an extension of maximum
 20 years allowed under nuclear reactor regulation act
- Strategic Energy Plan (published in April 2014): "Dependency on nuclear power generation will be lowered to the extent possible"

Scenario assumptions


	Lifetime of existing reactors	New reactor additions
High	60 years	3 units currently under construction
BAU	40 years (except for the reactors approved/examined for extension)	3 units currently under construction
Low	Same as BAU	No new reactors

Sources: OCCTO and METI.

China's increasing presence in APEC nuclear generation

APEC nuclear capacity [GW]

Note: Nuclear capacity in each economy is rounded. The number of block does not necessarily means the exact installed capacity. Source: APERC.

APERC uses a long-term power supply model based on cost-optimization

Electricity supply model structure

Demand models

Yearly demand

Load curves

Prices and costs

- Energy and CO₂ prices
- Initial/O&M costs

Existing capacity

Operational info.

- Plant availability
- Capacity credit
- Efficiencies
- Minimum output level
- Reserve margin target

Policy information

- Power development plans/policies
- Renewables/nuclear policies

Electricity Supply Model

'Least cost' approach

Capacity addition and generation volume is determined based on costs (initial, O&M, fuel and carbon costs) under various technical and political constraints.

Capacity additions

Investment needs

Generation by plant type

Plant dispatch and capacity factor

Fuel consumption

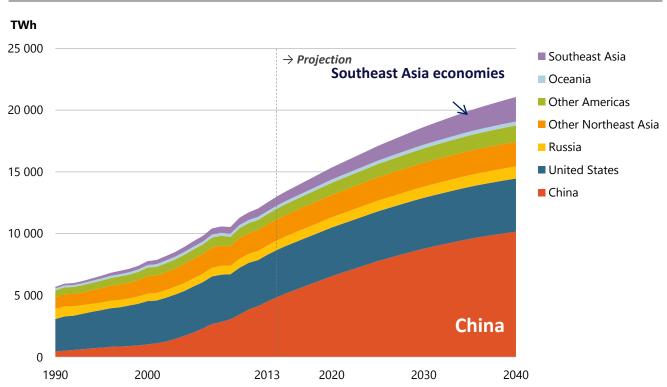
Emissions and emission intensity

Total and average power generation costs

Modelled technologies

Generation

- Nuclear
- Coal-fired (sub-critical)
- Coal-fired (super / ultrasuper critical)
- Gas turbine
- · Gas combined cycle
- Oil-fired
- Solar PV & solar thermal
- Wind (onshore, offshore)
- Geothermal
- Biomass and others


Storage

- Pumped hydro
- Battery
- Future nuclear capacity is assumed by the scenario (not based on optimization)
- The model determines fossil fuel-fired capacity and operation of all technologies, considering policy directions

China and Southeast Asian economies drive demand growth

- Electricity demand in APEC grows by 70% over the outlook period
- China and Southeast Asian economies more than double their demand

¹ Source: APERC (2016) "APEC Energy Demand and Supply Outlook 6th Edition"

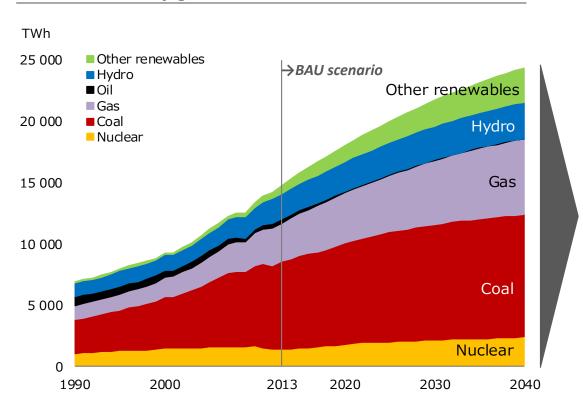
Cost assumptions

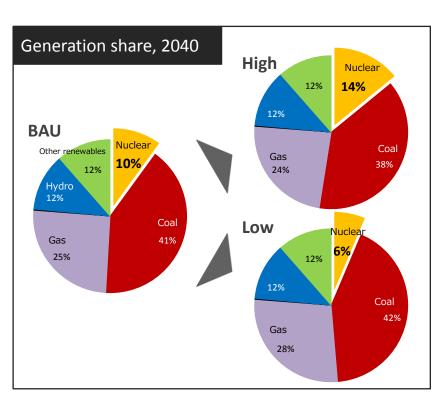
Fossil fuel prices¹

Capital costs of nuclear plant, selected region²

	2013	2020	2030	2040
Crude oil [USD/bbl]	108	73	97	121
Natural gas in Japan [USD/Mmbtu]	15.9	10.4	12.4	13.7
Natural gas in the US [USD/Mmbtu]	3.6	4.4	5.4	6.6
Steam coal [USD/tonne]	110	86	103	128

Unit: USD/kW	2013-2040
China	2000
Japan	3500
Southeast Asia	2000
Russia	3500
US	5400

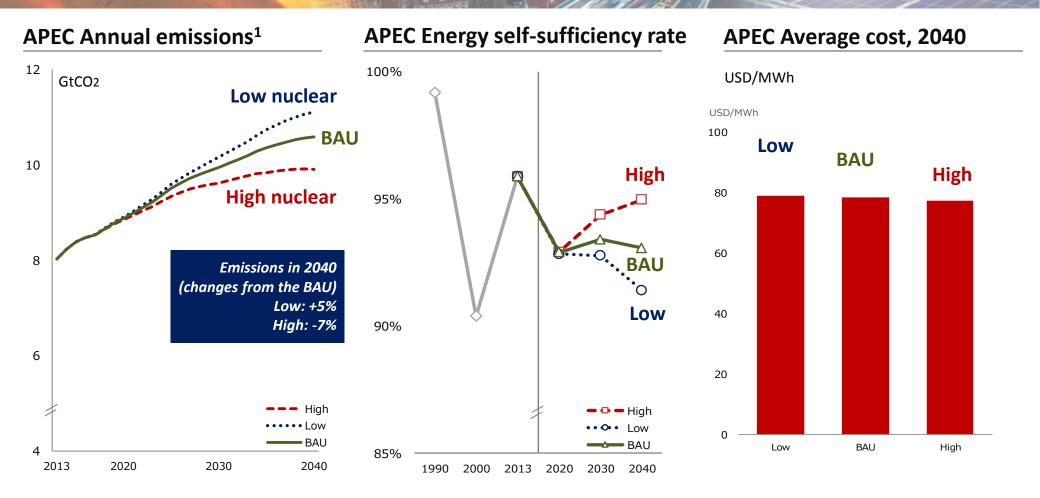

² Sources are as follows: EIA for US and IEA WEIO for other economies.



¹ The Outlook energy price assumptions are based on IEEJ's 2015 AWEO reference case and converted to USD 2012 PPP using World Bank PPP conversion factors; bbl = barrels; and Mmbtu = million British thermal units.

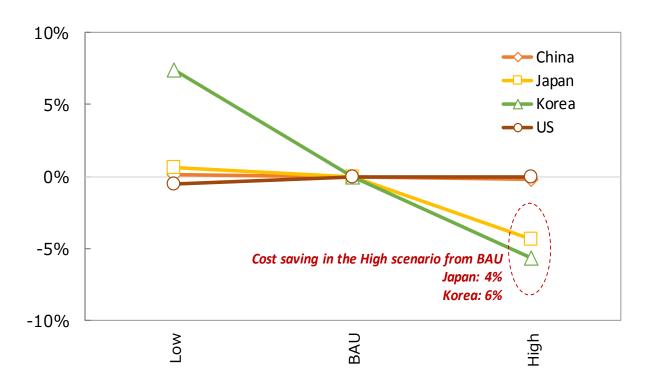
Fossil fuels dominate in the BAU and even in High-nuclear, but ...

APEC electricity generation, BAU



• Fossil fuels dominate in the BAU scenario, and even in the High nuclear scenario, although accelerated nuclear development contributes to reducing fossil fuel generation.

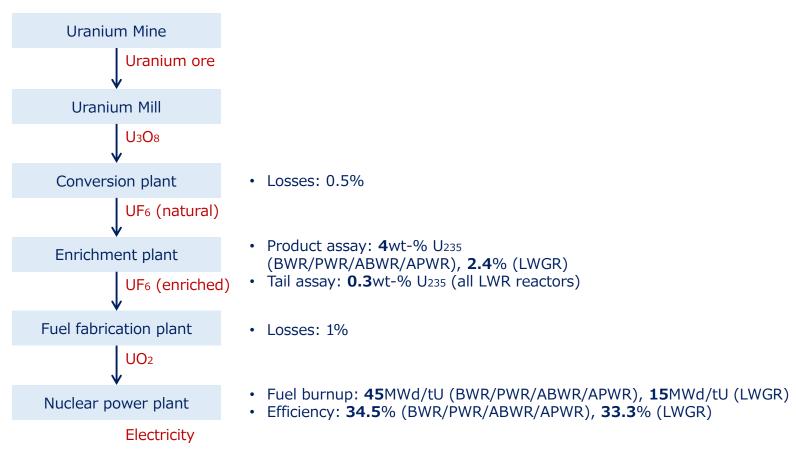
... but, nuclear contributes to APEC from the "3E" perspective



1 Emissions from electricity generation in APEC Source: APERC.

Economic impacts vary by economy, reflecting cost-competitiveness of the technology

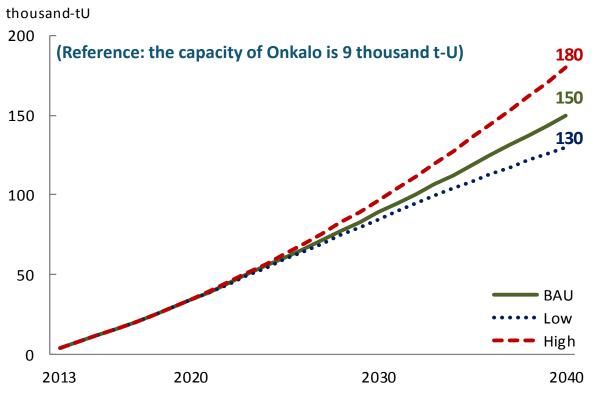
Generation cost changes relative to BAU, 2040, selected economies



- In general, larger impacts on "energy importing" economies, such as Japan and Korea (-4% and -6% in High, respectively)
- Changes in China and US are relatively small

A sub-model to estimate uranium consumption and spent fuel

Front-end model (LWR¹ model as an example)


1 LWR=Light Water Reactors. APERC also developed another model for heavy water reactors.

Source: World Information Service on Energy and APERC,

Waste management: headache for nuclear utilizing economies

Spent fuel (cumulative from 2013, APEC)¹

- Estimated amount of spent fuel reaches 130-179 thousand tons of Uranium; even Lownuclear scenario reaches 70% of the level in High scenario
- Economies need to construct sufficient intermediate storage and final disposal facilities

1 This estimation assumes a once-through fuel cycle for all economies.

Conclusion

- This study examined the impacts of three nuclear scenarios on APEC's generation mix
- Future nuclear development in the APEC region is driven mainly by China, increasing its presence in nuclear generation in Asia-Pacific
- Nuclear power contributes to the APEC region from the "3E" perspective, especially in terms of Environment
- Despite the capacity growth in the BAU, the share of nuclear remains around the current level due to increasing demand; further accelerated installation and license extension are important to increase the share
- A large amount of spent fuel is estimated even in the Low Scenario.
 Economies need to implement policies to construct sufficient facilities for storage and/or disposal

Thank you for your kind attention!

Website link to the full report: http://aperc.ieej.or.jp/file/2017/8/30/APERC_Nuclear_Power_AsiaPacific_Final.pdf

http://aperc.ieej.or.jp/

