

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Modeling Renewable Energy in Europe: Cost-Efficient System Integration

Geoffrey J. Blanford, Ph.D. EPRI and Ifo Institute, Munich

IEA, Paris, 8 October 2014

EU Electric Sector is Undergoing Rapid Change

© 2014 Electric Power Research Institute, Inc. All rights reserved.

How should we think about renewable energy?

- Renewable energy (in this talk = wind and solar) is at the center of most scenarios for decarbonisation of electric generation
- Supported by a wide array of policy instruments
- Key characteristics are well-known:
 - Capital intensive; costs declining
 - Intermittent; spatially dispersed; physical constraints
- Economic implications of these traits are less well understood (e.g. many insist on LCOE-based analysis → uninformative)
- Long-term modelling of role of renewable energy must effectively capture these implications

© 2014 Electric Power Research Institute, Inc. All rights reserved.

How should we think about renewable energy?

- Renewable energy exhibits decreasing returns to scale, i.e.: The *value* of wind or solar capacity declines as more is added
- The three factors potentially driving this are:
 - Intermittent (time profile is "inconvenient", storage is costly)
 - Spatially dispersed (transmission is costly or constrained)
 - Physical constraints on resource base
- In most electricity models, focus is on resource constraints; but the time profile is the main driver of decreasing returns
- Illustration with marginal value curve model calculation

EU-REGEN Model

- Jointly developed by EPRI and Ifo Institute, Munich
- Selected model characteristics:
 - Optimized investment/rental with high-resolution dispatch
 - Renewable resources and load based on hourly shapes
 - Continental scope with country-specific detail and cross-border power flows
- Built on EPRI experience:
 - US-REGEN model developed with 13 US member companies
 - Wide range of applications energy and environmental policy and technology issues

Hourly Data

- We have synchronized regional series for:
 - Load
 - Wind output
 - Solar output
- Load data by country available from ENTSO-E
- Hourly wind and solar data constructed to match current feed-in and spatial distribution
 - Publicly available gridded weather data in combination with turbine / panel power functions
- Results here based on 2012 shapes

Residual Load Duration Curve Illustration

Contribution of wind to EU residual load curve

Interaction effect of solar on wind

Contribution of solar to EU residual load curve

Interaction effect of wind on solar

Marginal Value Curve Analysis

- Run a static instance of EU-REGEN (single year ~ 2012)
- Fixed capacity for hydro, pumped storage, and transmission
 - All other capacity is rented and dispatched to meet load at minimum cost → long-run equilibrium
- Systematically vary the cost of wind and solar and plot rented capacity at each cost level → marginal value curve
- Sensitivity to new transmission (at a cost)

Marginal Value Curve for Wind and Solar in EU

Generation mix as a function of wind cost

Cost of Wind Capacity (€/kW)

Generation mix as a function of solar cost

Cost of Solar Capacity (€/kW)

New transmission increases value

Key Takeaways

- Co-variation of load and renewable energy is the fundamental driver of the economic potential of renewable technologies
- Achieving "grid parity" on LCOE-basis is not meaningful
- Policies, investments, market design should keep DRTS in mind
- Role of renewables in future scenarios should be:
 - Cost efficient with respect to other options (market-driven)
 - Consistent with reliability constraints (back-up capacity)
 - Developed with a system perspective (cross-country)
- Models like EU-REGEN can demonstrate this role

Together...Shaping the Future of Electricity