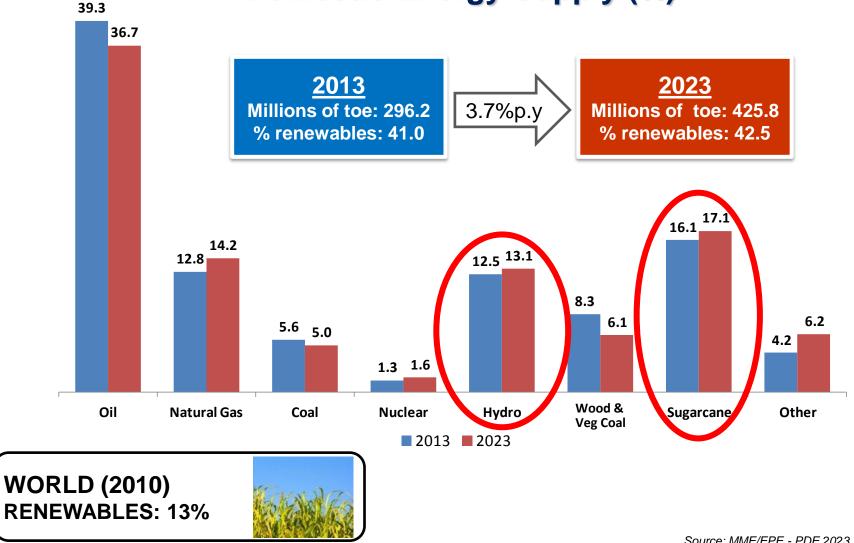
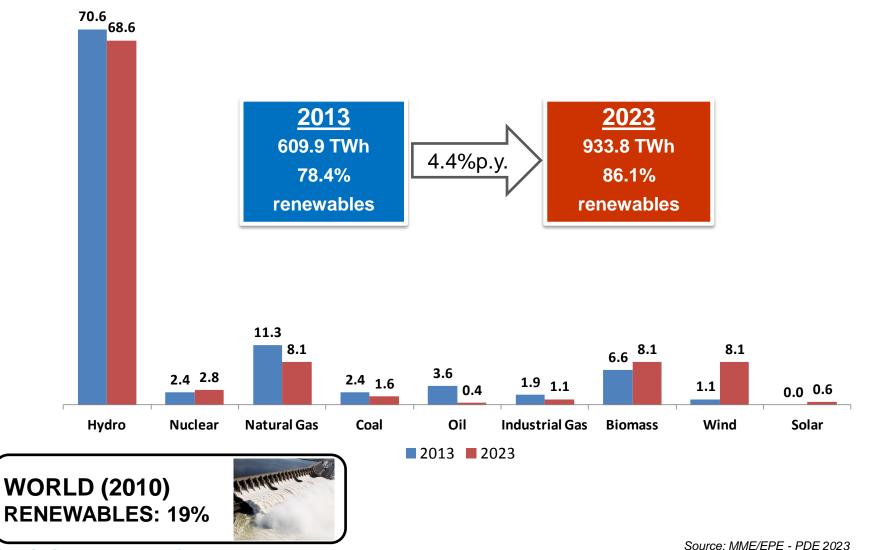

Electric Energy Research Center



Albert C. G. Melo DIRECTOR-GENERAL CEPEL

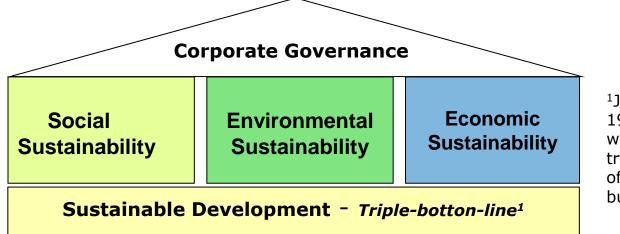
Brazilian Energy Matrix


Domestic Energy Supply (%)

Brazilian Electricity Mix

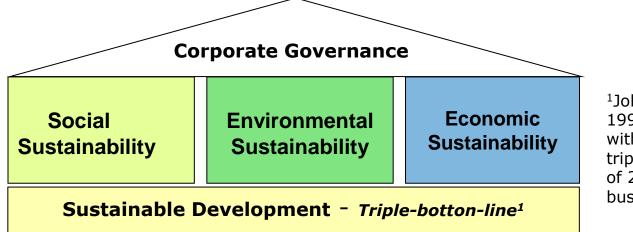
Domestic Electricity Supply (%)

Sustainable Development of the Brazilian Electrical System



There is no Sustainable Development without Sustainable Energy

Source: MME, EPE, 2010


"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." World Commission on Environment and Development (WCED). Our common future. Oxford: Oxford University Press, 1987

¹John Elkington, 1998. Cannibals with forks: The triple bottom line of 21st century business

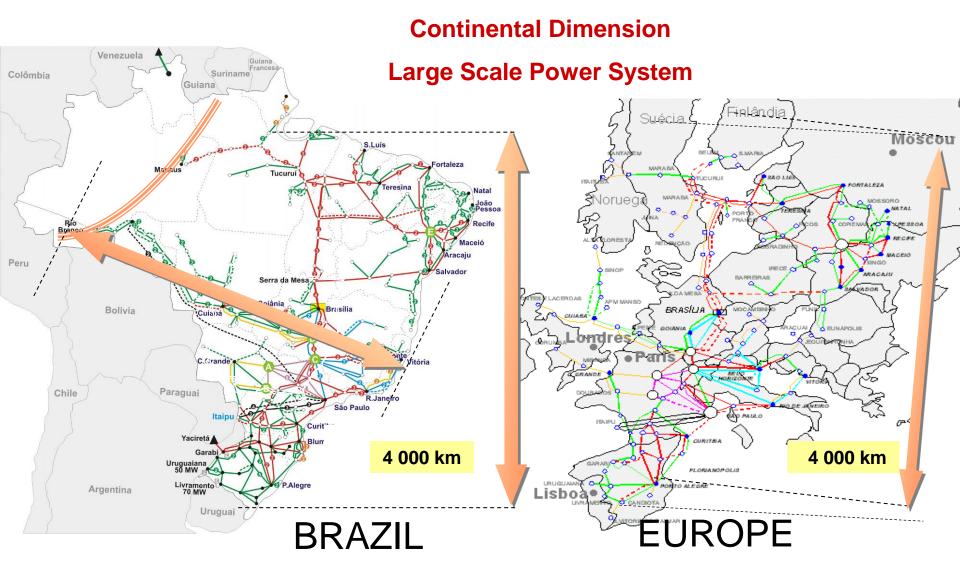
"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." World Commission on Environment and Development (WCED). Our common future. Oxford: Oxford University Press, 1987

¹John Elkington, 1998. Cannibals with forks: The triple bottom line of 21st century business

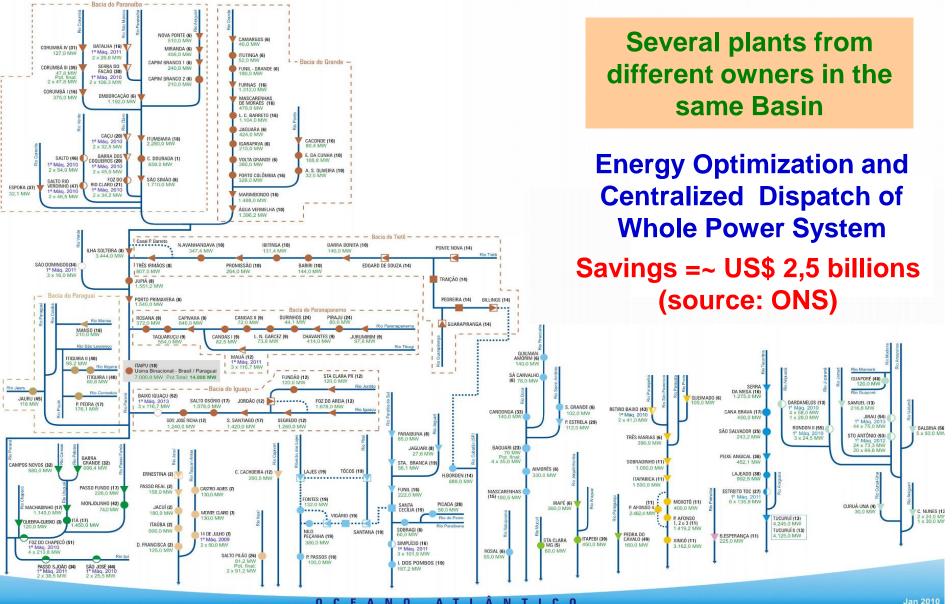
Quadruple-Bottom-Line? (Policy Framework & Market Design)

Policy Framework and Market Design

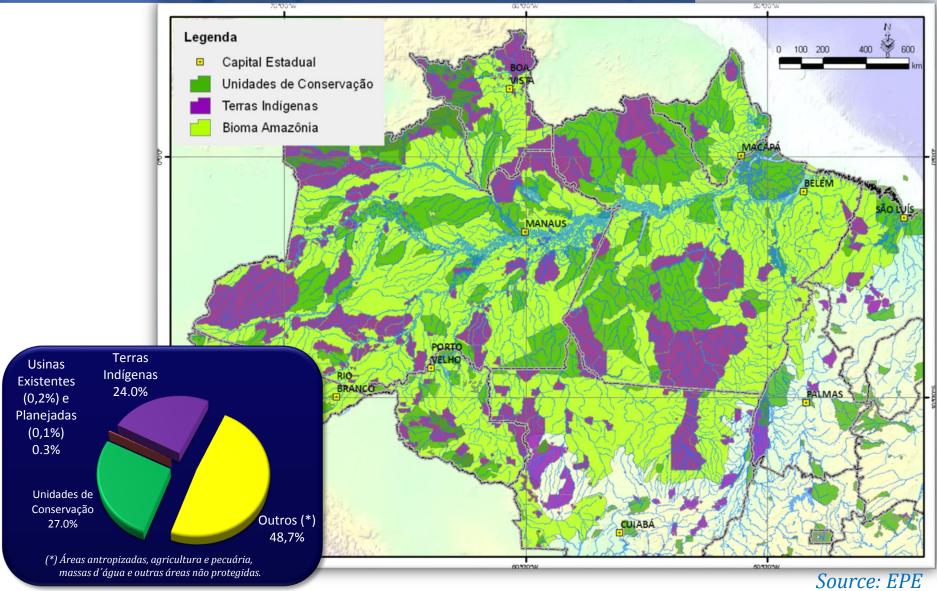
The Brazilian Approach


Policy Framework and Market Design

□ Should consider country circumstances


Brazilian Transmission System

Hydroelectric Interdependence



C 0 0 С

Environmental Conservation and Indigenous Areas in the Brazilian Amazon

Policy Framework and Market Design

Should consider country circumstances

Brazil main features

 Territorial Extension 8,514,876 km²; Population (2014) : 200.2 million
 GDP 2013 US\$ 2.3 trillion

 Installed capacity (Sep 2014) 131 GW

 Hydro: 67 % (Capacity); 75-90% (Power production)
 Thermal: 30 %
 Wind: 3 %
 will double in the next 15 years

 Transmission lines 110,000 km
 Consumption (2014 est.) 530 TWh

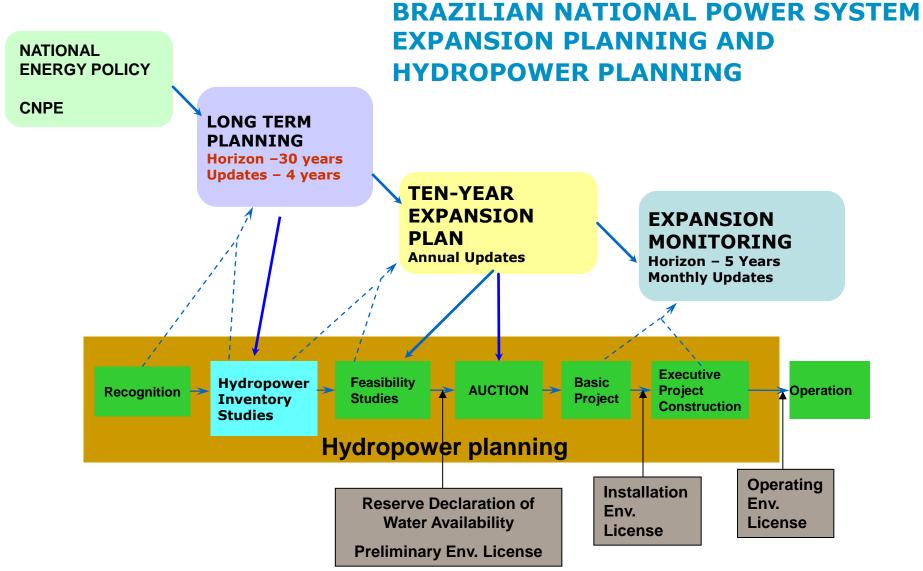
 Load growth rate: 4% to 5% per year

Policy Framework and Market Design

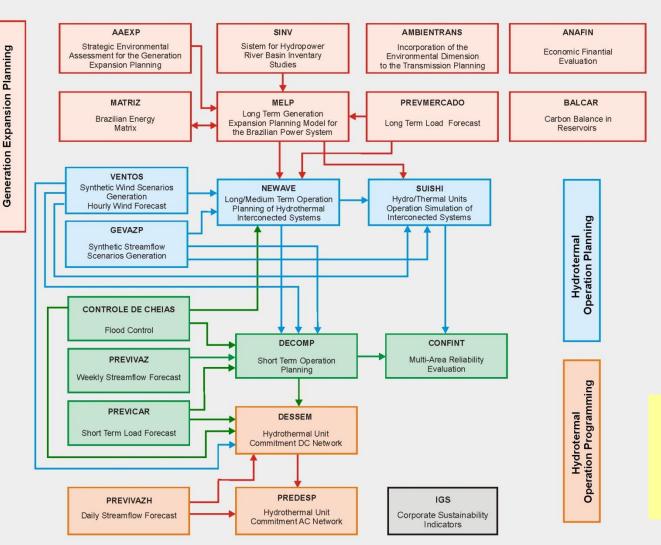
Should consider country circumstances

Brazil main features 8,514,876 km²; Population (2014) : 200.2 million Territorial Extension GDP 2013 US\$ 2.3 trillion □ Installed capacity (Sep 2014) 131 GW □ Hydro: 67 % (Capacity); 75-90% (Power production) □ Thermal: 30 % \Box Wind: 3% □ will double in the next 15 years □ Transmission lines 110,000 km □ Consumption (2014 est.) 530 TWh □ Load growth rate: 4% to 5% per year → Continental country → Large renewables potential ➔ Hydro-dominated → Rapidly expanding

- Importance of tools for
 - **D** Expansion Planning
 - Hydrothermal centralized dispatch, considering hydrological diversity

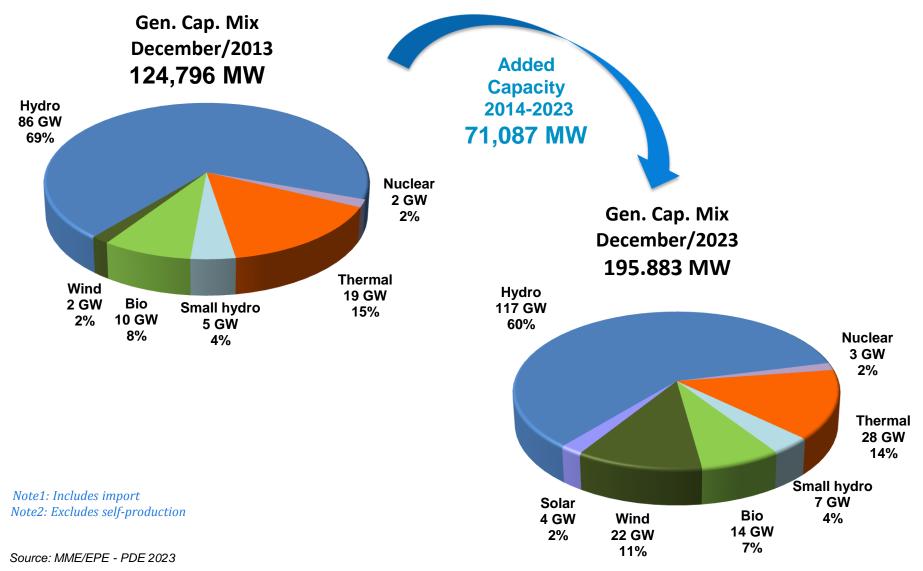

Policy Framework – Stages for Coordinated Expansion Planning

Policy Framework – Stages for Coordinated Expansion Planning and Sustainable Hydropower Development



CEPEL's Chain of Optimization Models for the Generation Expansion and Operational Planning of the Brazilian System

Chain of Optimization Models for the Generation Expansion and Operational Planning


Energy Optimization and Centralized Dispatch of the Whole Interconnected Hydrothermal System:

> 20% More Energy Production

Need of capturing synergies in planning and operation stages

Ten-Year Expansion Planning of the Generation Capacity (GW)

Policy Framework and Market Design

The Brazilian Auctions Mechanism

Previous Environment (Until 2003)

- The development of a hydropower project was granted to that one that offered to the Government the largest monetary value for this
 - He assumed the obligation to seek " loads ", ie, distributors and free consumers
 - □ to establish a long-term contract for the purchase of energy (PPA)
- However, in a system with predominantly hydroelectric production
 - □ most of the time, the operation marginal costs are low
 - if the loads had established PPAs with generators , they would have to pay higher long-term prices

□ The loads decided to act as "free-riders"

- □ and to not establish PPAs with generators
- □ once there was no real obligation to be the long-term contracted

With no PPAs

- generators were unable to obtain financing for the implementation of the plants
- the expansion of generation capacity required to meet the demand growth did not materialize.
- This structural imbalance was a Key issue that led to the electricity rationing in 2001/2002

□ Introduction of competition for the Long-Term market **Electricity Contracting Environments**

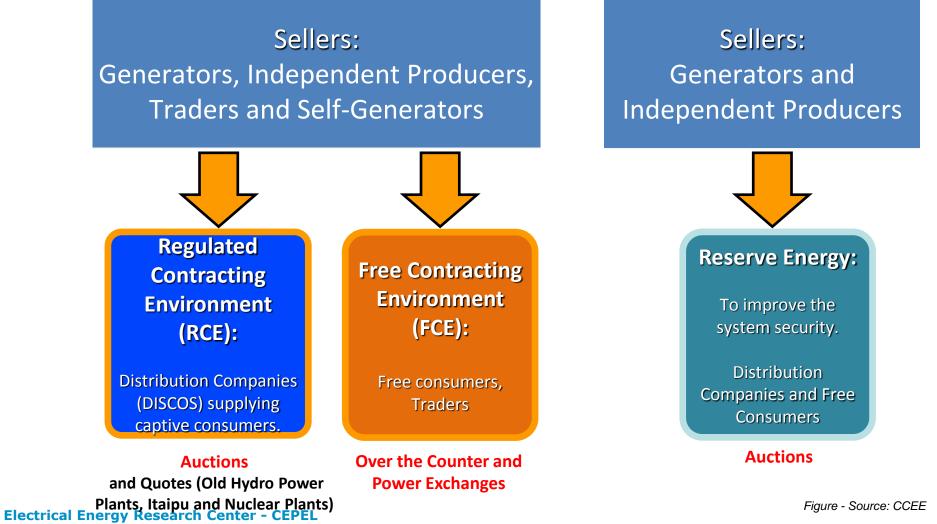


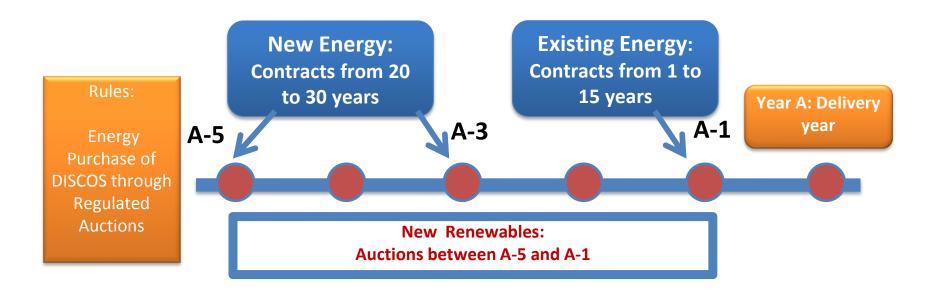
Figure - Source: CCEE

- □ Introduction of competition for the *Long-Term* market
- □ Loads have now to be 100 % contracted
 - □ Regulated (captive) consumers, supplied by Discos
 - Free consumers

- □ Introduction of competition for the *Long-Term* market
- □ Loads have now to be 100 % contracted
 - □ Regulated (captive) consumers, supplied by Discos
 - □ Free consumers
- All contracts, which are financial instruments, must be covered by real power production capacity
 - □ defined by a "plate number" called Assured Energy Certificate AEC
 - □ need to present *Fuel Supply Purchase Agreement*

- □ Introduction of competition for the *Long-Term* market
- □ Loads have now to be 100 % contracted
 - Regulated (captive) consumers, supplied by Discos
 - □ Free consumers
- All contracts, which are financial instruments, must be covered by real power production capacity
 - □ defined by a "plate number" called Assured Energy Certificate AEC
 - □ need to present *Fuel Supply Purchase Agreement*
- Public auctions were introduced as a procurement mechanism for purchasing energy for captive consumers
 - □ the winner in auctions is the one that offers the lowest price per kWh
 - in exchange, all distributors have an obligation to enter into Long-Term PPAs with each auction winner
 - □ this future cash flow can be used to obtain loans from banks
 - □ hydros need the Preliminary Environment License to go to Auctions
 - □ role of the Brazilian National Development Bank (BNDES)
 - □ dedicated auctions for *Structuring Projects* or *Specific Technologies* is allowed

- □ Introduction of competition for the *Long-Term* market
- □ Loads have now to be 100 % contracted
 - Regulated (captive) consumers, supplied by Discos
 - □ Free consumers
- All contracts, which are financial instruments, must be covered by real power production capacity
 - □ defined by a "plate number" called Assured Energy Certificate AEC
 - □ need to present *Fuel Supply Purchase Agreement*
- Public auctions were introduced as a procurement mechanism for purchasing energy for captive consumers
 - □ the winner in auctions is the one that offers the lowest price per kWh
 - in exchange, all distributors have an obligation to enter into Long-Term PPAs with each auction winner
 - □ this future cash flow can be used to obtain loans from banks
 - hydros need the Preliminary Environment License to go to Auctions
 - □ role of the Brazilian National Development Bank (BNDES)
 - dedicated auctions for Structuring Projects or Specific Technologies is allowed
- Free consumers can procure their energy needs as they please
 as long as they remain 100% contracted



- □ Auction prices are then passed on to electricity tariffs
- In the Regulated Contracting Environment there are separate auctions to
 - □ procure new energy or
 - □ renew existing contracts (from existing power plants)

- □ Auction prices are then passed on to electricity tariffs
- In the Regulated Contracting Environment there are separate auctions to
 - □ procure new energy or
 - □ renew existing contracts (from existing power plants)
- □ There are two types of contracts: quantity or availability
 - □ Quantity: It is a standard financial forward contract, where generators bid an energy price of R\$/MWh for their AECs
 - generators bear all the risks from the coordinated operation of the hydrothermal generation system
 - Availability: It is a typical call option, where generators receive an option premium in R\$/year (paid in 12 monthly installments) to remain available to the dispatch.
 - the captive consumers bear the hydrological risk pay the operational cost every time the generator is dispatched
 - □ this operational cost works as an energy strike price

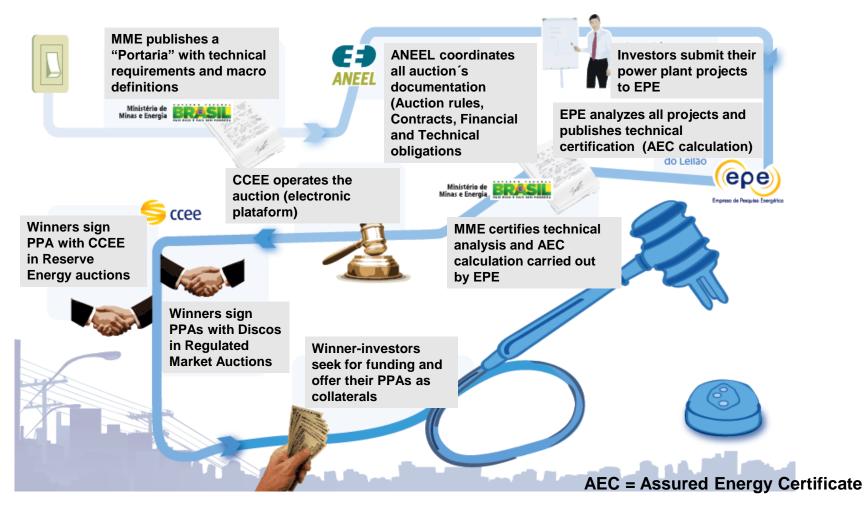
Public Auctions

Buyers: Distribution Companies

- Auction works centralized with DISCOS declaring their needs to cover the load.
- Obligation to cover 100% of the load

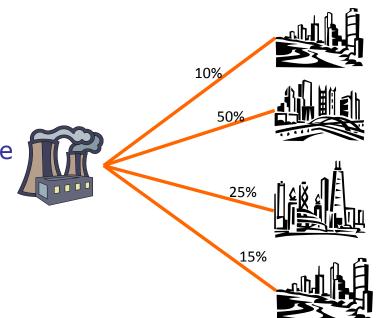
Sellers: Generators technically qualified by EPE or ANEEL

Eletrobras


Cepel

- Hydro: Contracts of 30 years
- Thermal, Wind, PV and Biomass: Contracts of 20 or 25 years

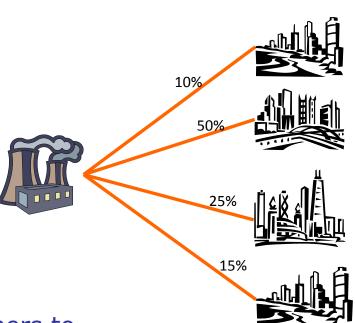
Public Auctions


How auctions are operated?

Public Auctions – Contracts Guarantees

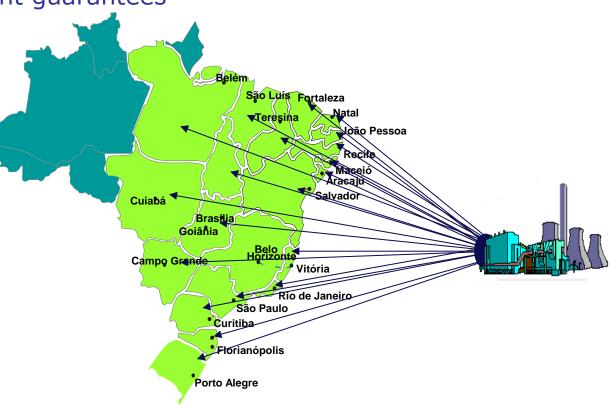
- Winners sign direct bilateral contracts with the Discos, despite of the centralized auction
 - in proportion to their declared load forecasts (Pool Contracting scheme)
 - small Discos benefit from economy of scale of the centralized auction scheme
 - Portfolio approach

Public Auctions – Contracts Guarantees



- Winners sign direct bilateral contracts with the Discos, despite of the centralized auction
 - in proportion to their declared load forecasts (Pool Contracting scheme)
 - small Discos benefit from economy of scale of the centralized auction scheme
 - Portfolio approach
- There is another contract attached which is called Guarantee Linked Contract (CCG)
 - it transfers the money from end-Customers to Generator
 - avoids the Discos of making discretionary payment
 - minimizes the default risk of Generators

Distributor


Public Auctions – Contracts Guarantees

Government

- does not interfere with the demand forecasts, which are directly declared by distribution companies
- nor does it take ownership for the energy contracts
- nor provides payment guarantees

It is not a typical single buyer model

Auction Mechanism

- Brazil has mainly used two different hybrid design formats for electricity auctions
 - Sealed-bid and Continuous
 - Descending clock and pay-as-bid (discriminatory auction)
- Sealed-bid and Continuous
 - is used to competition for concession rights of Medium/Large Hydro Plants
- Descending clock and pay-as-bid
 - is normally used to contracting of Small Hydro Plants, Winds, Solar, Biomass, Gas, Oil and Coal
- The majority of Brazilian auctions are done electronically by internet

Public Auctions

- Auctions act as the main driver to promote efficient purchases by distribution companies when acting on behalf of captive consumers
- □ Since 100% of the load needs to be contracted, the *spot market* serves to settle (positive or negative) differences between
 - a plant's actual production, scheduled by the System Operator, and its energy Assured Energy Certificate
 - □ a load actual consumption and its contracted energy
- The cleared price in the Spot Market is the short run marginal cost

The Brazilian Auctions Mechanism

- Some Results

Results – New Energy Auctions

Date	Period of Supply	Source	Installed Capacity (MW)	Energy (TWh)	Average Price		Average Current Price		Current Financial Allocation	
					(R\$/MWh)	(US\$/MWh)	(R\$/MWh)	(US\$/MWh)	(R\$ Billion)	(US\$ Billion)
16/12/2005	2008 - 2022	B, NG, DO								
	2009 - 2023	B, C, NG, DO	13,020.9	564.0	121.20	60.60	189.71	94.86	107.0	53.5
	2010 - 2024	C <i>,</i> NG								
	2008 - 2037	Н								
	2009 - 2038	Н								
	2010 - 2039	Н								
29/06/2006	2009 - 2023	B, NG, FO, DO	7 040 7	256.2	120.05	64.49	100 70	00.40	70.0	25.4
	2009 - 2038	Н	7,049.7	356.3	128.95	64.48	198.79	99.40	70.8	35.4
10/10/2006	2011 - 2025	B, NG, FO, DO	2 4 5 4 5	220.0	120.00		107 17	08 50	12 1	21.7
	2011 - 2040	Н	3,151.5	220.0	128.90	64.45	197.17	98.59	43.4	21.7
26/07/2007	2010 - 2024	FO	1,791.4	171.5	134.67	67.34	199.74	99.87	34.3	17.1
16/10/2007	2012 - 2026	C, NG, FO								
	2012 - 2041	с, но, но Н	4,616.0	398.0	128.73	64.37	189.12	94.56	75.3	37.7
17/09/2008	2011 - 2025	NG, FO	1,935.4	141.5	128.42	64.21	178.10	89.05	25.2	12.6
30/09/2008	2012 2027		5,566.5	426.8	141.78	70.89	196.63	98.32	83.9	42.0
	2013 - 2027	B, C, NG, FO								
	2013 - 2042	<u>H</u>								
27/08/2009	2012 - 2026	В	70.5	1.6	144.50	72.25	192.52	96.26	0.3	0.2
	2012 - 2041	Н								

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy Reference date for current values: august/2014 (IPCA) Exchange rate: 2 R\$/US\$

Results – New Energy Auctions

Date	Period of Supply	Source	Installed Capacity (MW)	Energy (TWh)	Average Price		Average Current Price		Current Financial Allocation	
					(R\$/MWh)	(US\$/MWh)	(R\$/MWh)	(US\$/MWh)	(R\$ Billion)	(US\$ Billion)
30/07/2010	2015 - 2044	Н	808.9	67	99.48	49.74	126.90	63.45	8.5	4.3
17/12/2010	2015 - 2044	н	2,928.9	340.6	67.31	33.66	83.58	41.79	28.5	14.2
17/08/2011	2014 - 2044 2014 - 2034	H B, W, NG	2,744.6	285.5	102.07	51.04	121.38	60.69	34.7	17.3
20/12/2011	2016 - 2046 2016 - 2036	Н В, W	1,211.5	104.5	102.18	51.09	119.14	59.57	12.5	6.2
14/12/2012	2017 - 2047 2017 - 2037	H W	574.3	66.2	91.25	45.63	100.52	50.26	6.7	3.3
29/08/2013	2018 - 2048 2018 - 2043	H B	1,265.5	165.2	124.97	62.49	133.43	66.72	22.0	11.0
18/11/2013	2016 - 2036	W	867.6	58.3	124.43	62.22	130.62	65.31	7.6	3.8
13/12/2013	2018 - 2048	Н	3,507.4	325.6	109.93	54.97	114.34	57.17	37.2	18.6
	2018 - 2043 2018 - 2038	B W								
06/06/2014	2017 - 2047 2017 - 2037	H W	968.6	80.6	126.18	63.09	127.01	63.51	10.2	5.1

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy Reference date for current values: august/2014 (IPCA)

Exchange rate: 2 R\$/US\$

Total Energy Traded in the <u>New</u> Energy Auctions:

Date	Period of	Source	Installed Capacity (MW)	Energy	Avera	ge Price	Average Current Price		Current Financial Allocation	
	Supply			(TWh)	(R\$/MWh)	(US\$/MWh)	(R\$/MWh)	(US\$/MWh)	(R\$ Billion)	(US\$ Billion)
18/06/2007	2010 - 2024	В	549.1	30.5	137.32	68.66	204.16	102.08	6.2	3.1
18/08/2007	2010 - 2039	Н				00.00				
26/08/2010	2013 - 2042	Н	1,685.6	129.4	135.48	C7 74	172 70	86.38	22.4	11.2
26/08/2010	2013 - 2032	B <i>,</i> W				67.74	172.76			

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy Reference date for current values: august/2014 (IPCA) Exchange rate: 2 R\$/US\$

> Total Energy Traded in the <u>New Energy Auctions</u> and <u>Renewable Sources Auctions</u>: **3,933 TWh**

Period of Date Supply		Source	Installed Source Capacity	Energy	Avera	Average Price		Average Current Price		Current Financial Allocation	
		(MW)	(TWh)	(R\$/MWh)	(US\$/MWh)	(R\$/MWh)	(US\$/MWh)	(R\$ Billion)	(US\$ Billion)		
10/12/2007	2012 - 2041	Н	3,150.4	379.2	78.87	39.44	114.59	57.30	43.5	21.7	
19/05/2008	2013 - 2042	Н	3,300.0	348.6	71.37	35.69	100.78	50.39	35.1	17.6	
20/04/2010	2015 - 2044	Н	11,233.1	794.9	77.97	38.99	99.90	49.95	79.4	39.7	

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy Reference date for current values: august/2014 (IPCA) Exchange rate: 2 R\$/US\$

> Total Energy Traded in the New Energy Auctions, Renewable Sources Auctions and 5,4 Structuring Projects Auctions:

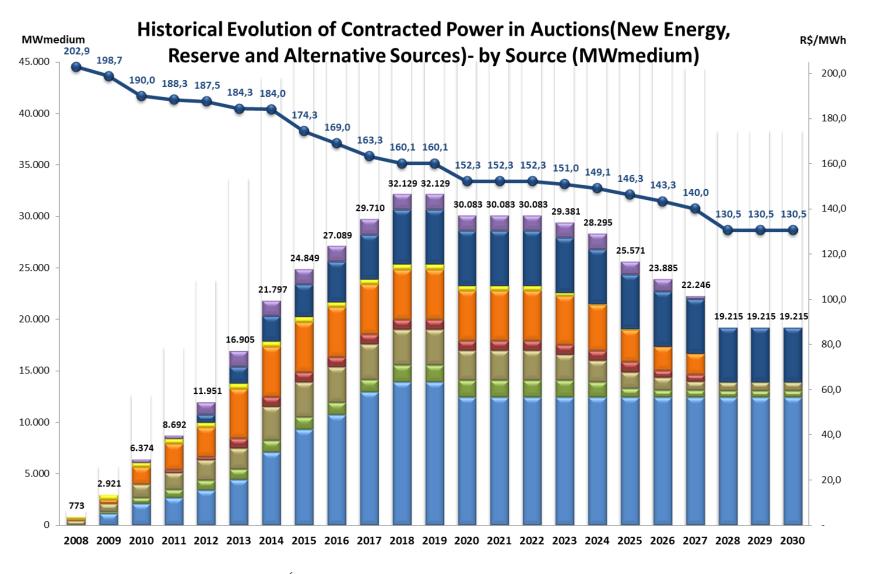
5,456 TWh

Date	Period of Supply	Source	Installed Capacity	Energy (TWh)	Average Price		Average Current Price		Current Financial Allocation	
			(MW)		(R\$/MWh)	(US\$/MWh)	(R\$/MWh)	(US\$/MWh)	(R\$ Billion)	(US\$ Billion)
14/08/2008	2009 - 2023	В	2,383.9	71.2	58.84	29.42	81.82	40.91	5.8	2.9
14/00/2008	2010 - 2024	В	2,303.9	/ 1.2	58.84	23.42	01.02	40.91	5.0	2.9
14/12/2009	2012 - 2031	W	1,805.7	132	148.39	74.20	195.16	97.58	25.8	12.9
	2011 - 2025	В								
	2012 - 2026	В								
25/08/2010	2013 - 2042	SH	1206.6	72.0	125.07	62.535	159.48	79.74	11.5	5.7
	2013 - 2032	W								
	2013 - 2027	В								
18/08/2011	2014 - 2034	B, W	1,218.1	80.7	99.61	49.81	118.46	59.23	9.6	4.8
23/08/2013	2015 - 2035	W	1,505.2	118.4	110.51	55.26	117.71	58.86	13.9	7.0

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy Reference date for current values: august/2014 (IPCA) Exchange rate: 2 R\$/US\$

> Total Energy Traded in the <u>Energy Reserve Auctions</u>: **474 TWh**

Consolidated Results



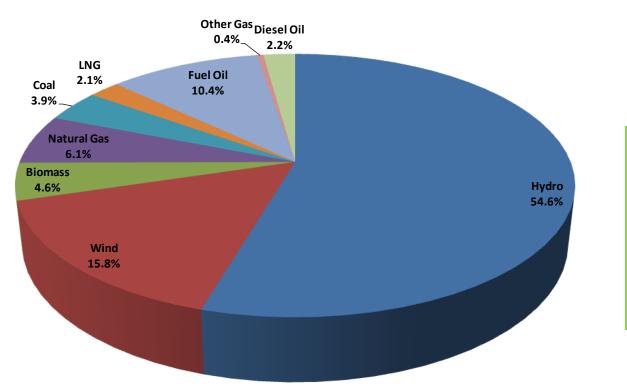
Auction Type	Qt	Added Capacity	Energy	Current Financial Allocation		
Auction Type	Q	(MW)	(TWh)	(R\$ Billion)	(US\$ Billion)	
Existing Energy	30	-	1,550	187	93	
New Energy	19	52,079	3,706	600	300	
Renewable Sources	2	2,235	160	29	14	
Structuring Projects	3	17,684	1,523	158	79	
Reserve Energy	5	8,120	474	76	38	
TOTAL	59	80,117	7,413	1,049	525	

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy Reference date for current values: august/2014 (IPCA) Exchange rate: 2 R\$/US\$

Auctions' Results

Auctions' Results

Electrical Energy Research Center - CEPEL


Total — AVERAGE SELLING PRICE

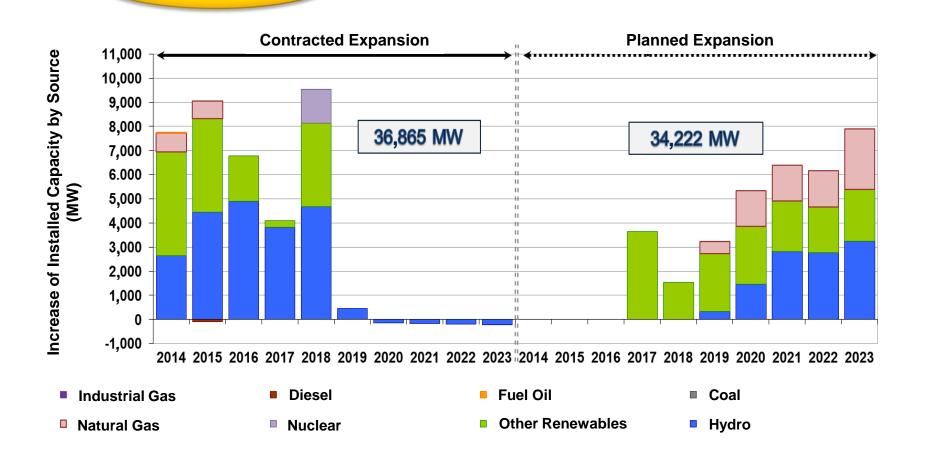
Eletrobras

Cepel

Total Energy Traded – 5,930 TWh

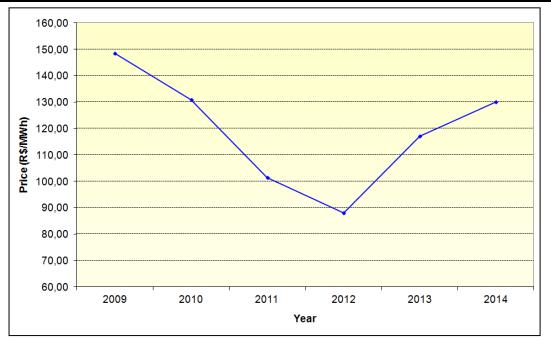
75% of the Energy Traded and Added to the System comes from Renewables

Source: Brazilian Ministry of Mines and Energy; Brazilian Chamber for Commercialization of Electrical Energy

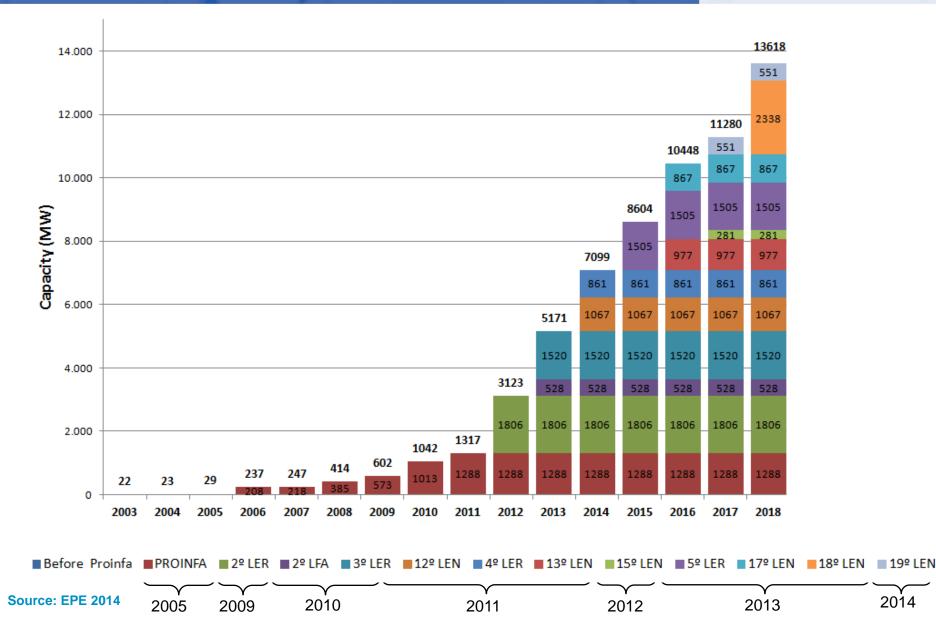

Includes New Energy Auctions, Renewable Sources Auctions, Structuring Projects Auctions and Reserve Energy Auctions

Brazilian Interconnected System Contracted Power (GW)

71,087 MW


INCREASE OF INSTALLED CAPACITY

Wind Projects Auctions



	Qualifie	d Projects	Contracted Projects					
Year	No	MW	No	MW	Pr R\$/MWh	ice US\$/MWh		
2009	339	10.005,00	71	1.805,70	148,39	84,79		
2010	320	8.304,00	70	2.047,80	130,86	73,93		
2011	240	6.052,00	117	2.905,30	101,47	54,85		
2012	484	11.879,00	10	281,90	87,94	42,20		
2013	539	13.287,00	202	4.710,60	117,21	49,12		
2014	248	6.159,00	21	551,00	130,01	57,94		

Wind Projects Auctions (MW)

2014

Oct. 31st, 2014 PPA: 20 years

Source	Number of Registered Projects	Capacity (MW)	Initial Price (R\$/MWh)	Initial Price (US\$/MWh)
Biomass	8	151	169.00	70.42
Wind	626	15,356	144.00	60.00
Solar photovoltaic	400	10,790	262.00	109.17
TOTAL	1,034	26,297	-	

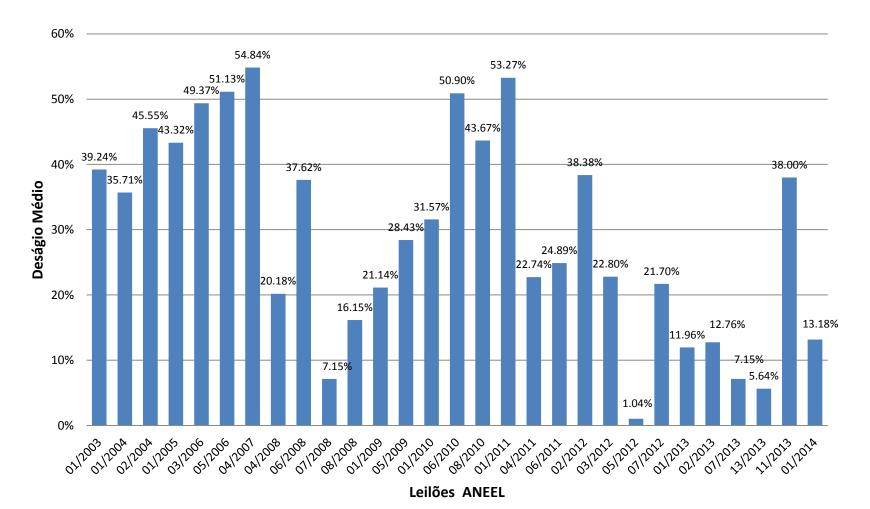
Source: Brazilian Ministry of Mines and Energy Exchange rate: 2.4 R\$/US\$

Biomass using municipal solid waste, biogas from landfills, biodigestors from vegetable or animal waste, sludge from sewage treatment plants

Source	Number of Registered Projects	Capacity (MW)	Initial Price (R\$/MWh)	Initial Price (US\$/MWh)
Wind	763	18,760	137.00	57.08
Solar - PV	224	6,068	137.00	57.08
Solar - CSP	8	240	137.00	57.08
Hydro	9	1,261	158.00	65.83
Small hydro	30	526	158.00	65.83
Biomass	32	1,917	197.00	82.08
Coal	10	4,490	197.00	82.08
Natural Gas	39	20,607	197.00	82.08
TOTAL	1,115	53,869	-	

Source: Brazilian Ministry of Mines and Energy Exchange rate: 2.4 R\$/US\$

Policy Framework and Market Design

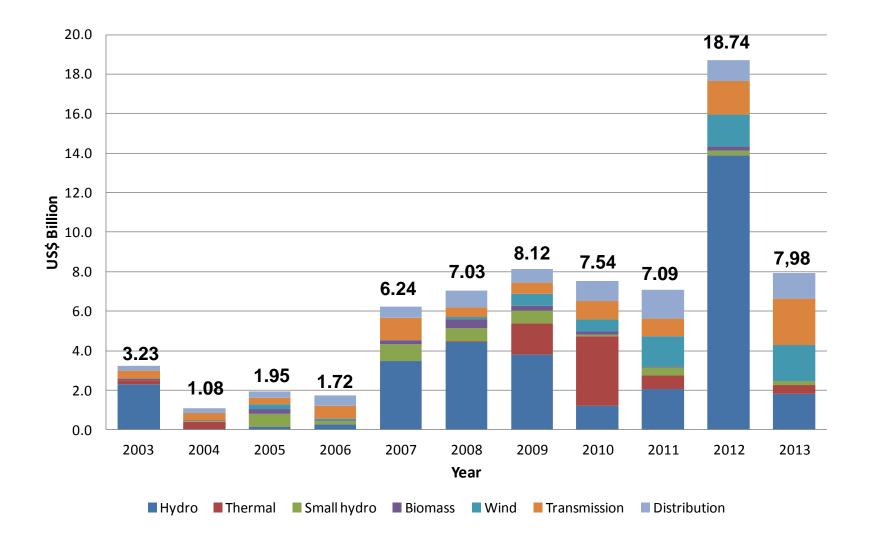


Transmission System Auctions

Transmission System Auctions

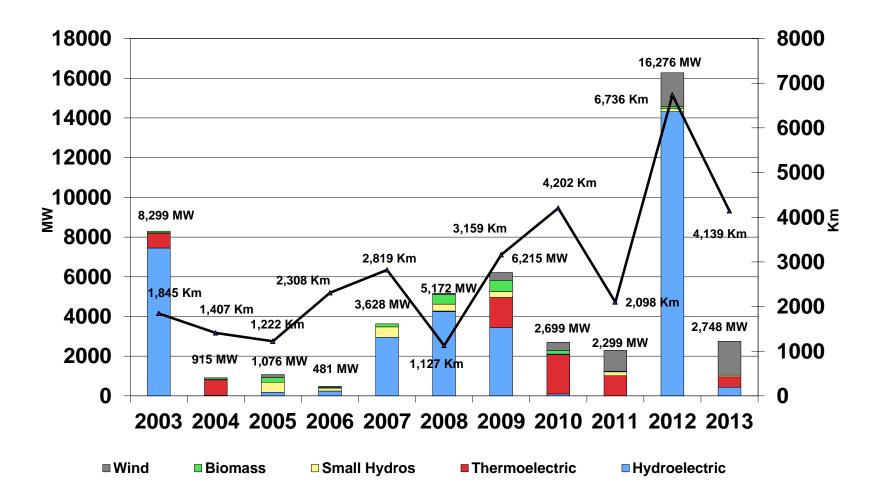
Main Grid – Average disccount from the Ceiling Prices by year

The Role of the Brazilian National Development Bank - BNDES


Operations with Credit Approved by BNDES (2003 – 2014)

		Number	BNDES	Funding	Associated Investment		
Activity	Capacity	of Projects	(R\$ mil)	(US\$ mil)	(R\$ mil)	(US\$ mil)	
1. Generation	50,130.03 MW	436	103,137,002	51,568,501	168,464,786	84,232,393	
Hydro	33,525.42 MW	51	63,788,018	31,894,009	102,759,798	51,379,899	
Thermal	6,578.24 MW	18	13,612,858	6,806,429	25,255,198	12,627,599	
Small hydro	2,340.09 MW	122	7,788,698	3,894,349	12,125,407	6,062,704	
Biomass	1,958.90 MW	44	3,421,617	1,710,809	4,610,389	2,305,195	
Wind	5,727.38 MW	201	14,525,810	7,262,905	23,713,994	11,856,997	
2. Transmission	31,061 km	109	19,608,041	9,804,021	39,072,007	19,536,004	
3. Distribution		93	16,648,892	8,324,446	29,077,061	14,538,531	
4. Efficiency		23	221,648	110,824	302,116	151,058	
TOTAL		661	139,615,583	69,807,792	236,915,970	118,457,985	

Exchange rate: 2 R\$/US\$



Electrical Energy Research Center - CEPEL

Exchange rate: 2 R\$/US\$

Electrical Energy Research Center - CEPEL

Exchange rate: 2 R\$/US\$

Thank you !

albert@cepel.br

Ministério de Minas e Energia

