Implementing Roadmaps

- Experiences and Challenges -

IEA Workshop on Energy Technology Roadmaps
15 - 16 May 2008, Paris

Makoto Akai

National Institute of Advanced Industrial Science and Technology

Role of technology roadmaps: Inquiry to the Private Sector

Significance of Technology Roadmaps of METI

- Communication tools
 - To build up common understanding on R&D needs and development direction through
 - sharing information,
 - exchanging views among technology experts and a government,
 - integrating knowledge and strengthen partnerships among industries, academia, and a government
 - Essential to promote coherent long-term investment

Significance of Technology Roadmaps in METI (cont'd)

- Project management tools to optimize R&D investment by clarifying milestones and objectives, monitoring progress, identifying gaps and challenges to overcome
- Knowledge base to promote cooperation across sectors, technology areas, and industry-academia partnerships
- Tools to fulfill accountability to taxpayers by clarifying pathways from R&D to commercialization and the public benefit

Key Elements of METI Technology Roadmaps

- Pathway to commercialization (Basic research, applied research, demonstration, and commercialization)
- Technical milestones (e.g. cost reduction), required technical performance set along the timeline
- Technical challenges, required elemental technology
- Required policy and measures to promote deployment and commercialization, other than technology R&D investment (e.g. deployment policy, standardization of technology)

Roadmapping Process

- By task forces in cooperation with NEDO, AIST and other institutions,
 - about 300 experts totally from academia, industry, and public research institutions
 - incorporating the best available information
- Developed roadmaps for 25 technology areas including energy
- Undertake an annual reviewing process to reflect the latest technological trends & progress in R&D projects

Recent Development in Energy Sector

Energy Technology Roadmapping

Development of Energy Technology Roadmaps

- 1. Definition of target(s)
- 2. Identification of energy technologies and enabling technologies or sciences
- 3. Prioritization based on technology assessment in accordance with policy goals
- 4. Mapping of technologies
- 5. Development of technology portfolio
- 6. Developing technology roadmaps
- 7. Supplementary scenario analysis

Technology Map

⇒ Technology Inventory

Technology Portfolio

Power storage

Cool Earth - Innovative Energy Technology Program

(restated)

transport

Power electronics

Development of Energy Technology Roadmaps

- 1. Definition of target(s)
- 2. Identification of energy technologies and enabling technologies or sciences
- 3. Prioritization based on technology assessment in accordance with policy goals
- 4. Mapping of technologies
- 5. Development of technology portfolio
- 6. Developing technology roadmaps
- 7. Supplementary scenario analysis

Technology Map

⇒ Technology Inventory

Development of Technology Roadmaps

Example of Technology Roadmap (CCS)

Cool Earth - Innovative Energy Technology Program

Utilization of Technology Inventory

Tech. RM 2005 (20 areas)

Tech. RM 2006 (24 areas)

Tech. RM 2007 (25 areas)

Process – Energy Technology RM *ETV 2100 to Cool Earth Program*

Utilization of well prepared technology inventory

- Energy Technology Vision 2100
 - 18 months' discussion through:
 - Workshops (5),
 - Steering committee meetings (8) and WG meetings (48),
 - Core group meetings (>50),
 - E-mails (>3000)
 - > 100 experts involved
- Energy Technology Roadmap 2007
 - 6 months' discussion in SC and WG meetings
- Cool Earth Innovative Energy Tech. Program
 - 7 months' discussion in Advisory Panel and WG meetings

Implementing Roadmaps

Project Management Cycle

Utilization of Technology Roadmap Scenario Development

- Important "Gedunken Experiment" based on accurate and correct insights into:
 - Technologies, Enabling technologies, and Science
 - Energy efficiency, renewables, nuclear, CCS ...
 - Technology assessment
 - Socio-economic development
- Supplemented by technology roadmapping

Utilization of Technology Roadmap Public communication

- Development of educational package by NEDO
 - Target audiences:
 - Junior high school or high school students
- Interpretation of roadmaps to depict an image of future life

Utilization of Technology Roadmap Development of Search Tool

- Development of "Search Tool" designed specifically to METI's Technology Roadmap by AIST
 - Natural language
 - Interactive

Feedbacks on METI's Roadmaps

Role of technology roadmaps: Inquiry to the Private Sector

Challenges in Developing/Implementing Roadmaps

- Difficulty to predict technology progress & address "off-road" technologies, especially technologies in boundary areas
- Technology push vs. demand pull
- Optimal technical targets/milestones setting
- Flexible/continuous revision of roadmaps
- Commitment from industry and research institutions to implement roadmaps/engagement of industry
- Linkage with financial resources
- Continuous monitoring

Importance of "roadmapping" rather than roadmaps themselves

Scenario Development/Roadmapping by Backcasting

Exploratory (opportunity-oriented):

- what futures are likely to happen? ⇒ Forecasting
 - starts from today's assured basis of knowledge and is oriented towards the future

Normative (goal-oriented):

- how desirable futures might be attained? ⇒ Backcasting
 - first assesses future goals, needs, desires, missions, etc. and works backward to the present

Clement K. Wang & Paul D. Guild

- Need for "POLITICAL WILL"
 - Especially in the case of government lead exercise

Political Will and S&T

- Political Will as a key driver
 - To set desirable target for the future
 - To develop roadmaps
 - To promote R&D activities
 - ≈ Implementation of Roadmaps
 - To design and promote socio-economic system to challenge policy goals such as energy security, climate change, etc.
- Available science and technologies, coupled with proper assessments, to drive Policies

Thank you!

References

- Groenveld, P. (1997), Roadmapping integrates business and technology, Research Technology Management, Sept-Oct., pp. 48-55.
- Phaal, R., Farrukh, C.J.P., Mitchell, R. and Probert, D.R. (2002), Starting up technology roadmapping fast, Research Technology Management, 46 (2), pp. 52-58. Republished in IEEE Engineering Management Review (2003), 31 (3).
- Galvin, R. (1998), Science roadmaps, Science, 280, p. 803.
- Albright, R.E. and Kappel, T.A. (2003), Roadmapping in the corporation, Research Technology Management, 42 (2), pp. 31-40
- Da Costa O., Boden M., Punie Y., Zappacosta M., (2003) Science and Technology Roadmapping: from Industry to Public Policy, IPTS Report 73