

The Strategic Research Agenda of the European PV Technology Platform: Methodology, Contents and Lessons learned

Jef Poortmans, Wim Sinke

on behalf of

PV Technology Platform WG3: Science, Technology & Applications

IEA Workshop May 16, 2008 Paris, France

- Contribute to a rapid development of a world-class cost competitive European PV for a sustainable electricity production
- Involve stakeholders in the formulation of research programmes
- Ensure strong links and coordination between industry, research and market.
- To implement the strategic plan

SRA and IP

PV ERA NET 3rd Joint Workshop – 29 04 2008

Rationale for a Roadmap

ITRS-roadmap in the field of micro-electronics

- Alignment of stakeholders
 - Device manufacturers
 - Material suppliers
 - Equipment manufacturers
 - Electronic circuit and application developers
- Based on a well-established underlying physical law (scaling of transistors –law of Moore)
- Has led to a tremendous increase of functionality/unit area
- Challenge: is something similar possible for PV?
 - Broad spectrum of PV-technologies
 - More external parameters (e.g. incentives for market growth)
 - Horizontal issues (integration of RES in the grid)

>SRA briefly revisited:

- Drivers and enablers for PV to be addressed by research
- SRA governing principles
- Methodology
- SRA aims & content summarized
- Lessons Learned

>SRA briefly revisited:

- Drivers and enablers for PV to be addressed by research
- SRA governing principles
- Methodology
- SRA aims & content summarized

Lessons learned

Drivers and enablers for PV development

Electricity generation cost and value

Environmental quality

> Applicability

SRA governing principles

Dedicate short-term research to competitiveness of EU PV industry

- Address all parts of the value chain and distinguish short, medium and long term
 - pre-define budget shares for ST, MT and LT
- > No technology exclusivity
- Set <u>common</u> (indicative) cost targets as a function of time for all (flat-plate) module technologies

Methodology

- Different Workgroups were formed
- These different Workgroups worked out
 - Questionnaires about specific PV cell and module technologies
 - Questionnaires about other parts of the PV value chain
 - Questionnaires were sent to experts outside working groups
- Feedback from >300 researchers and industrialists was collected
- Consolidated in a summary, agreed upon within the Working Groups (=appendices to the SRA)
- Executive summaries were written by Working Group responsibles and included in the Final SRA
- = "Meet in the Middle" process

Overall short term target:

reach grid parity (on consumer level) in Southern Europe by 2015

- typical turn-key system <u>price</u> ≤ 2.5 €/Wp
- typical turn-key system <u>cost</u> < 2 €/Wp</p>
- \Rightarrow grid parity in most of Europe by 2020

SRA aims quantified

characteristics of PV technology

1980 2007 2015 / 2020 2030 Long **Rounded figures** term potential Typical turn-key system >30 5 2.5/2.0 1 0.5 price (2007 €/Wp, excl. VAT) (range 4~8) **Typical electricity** >2 0.30 0.15 / 0.120.06 0.03 generation costs S (competitive with (competitive with **Europe** (2007 €/kWh) wholesale retail electricity) *electricity*) up to 8% Up to 20% Typical commercial flatup to 15% up to 25% up to 40% plate module efficiencies (total area) (~10%) Typical commercial up to 25% Up to 30% up to 40% up to 60% concentrator module efficiencies >10 2 1 0.5 0.25 Typical system energy pay-back time Southern Europe (yrs)

(lines to guide the eye)

irradiation (kWh/m²·yr)	PV generation cost (€/kWh)
600	0.83
1000	0.50
1400	0.36
1800	0.28

insolation map: Šúri M., Huld T.A., Dunlop E.D. Ossenbrink H.A., 2007. Potential of solar electricity generation in the European Union member states and candidate countries. <u>Solar Energy</u>, http://re.jrc.ec.europa.eu/pvgis/

SRA and IP

(lines to guide the eye)

irradiation (kWh/m²·yr)	PV generation cost (€/kWh)
600	0.50
1000	0.30
1400	0.21
1800	0.17

(lines to guide the eye)

irradiation (kWh/m²·yr)	PV generation cost (€/kWh)
600	0.42
1000	0.25
1400	0.18
1800	0.14

SRA and IP

PV ERA NET 3rd Joint Workshop – 29 04 2008

(lines to guide the eye)

irradiation (kWh/m²·yr)	PV generation cost (€/kWh)
600	0.33
1000	0.20
1400	0.14
1800	0.11

(lines to guide the eye)

(kWh/m²·yr)	PV generation cost (€/kWh)
600	0.17
1000	0.10
1400	0.07
1800	0.06

SRA and IP

PV ERA NET 3rd Joint Workshop – 29 04 2008

SRA contents summarised R&D fields distinguished

- Cell & module technologies
 - wafer-based crystalline silicon
 - existing thin-film technologies (Si, CIGSSe, CdTe)
 - emerging & novel technologies
- Concentrator technologies
- Balance-of-System components and systems
- Standards, QA, safety and environmental aspects
- Socio-economic and enabling research

selected R&D issues

Cell & module technologies: common aspects

- high-productivity manufacturing (processes and equipment)
- high efficiency devices
- Iow-cost transparent conductors
- low-cost, durable encapsulation for rigid and flexible modules
- environmental sustainability (energy & materials)

Wafer-based crystalline silicon

- 1/2 century of manufacturing history
- progressing by innovation and volume
- reduction of manufacturing costs is major challenge
- typical total area module efficiency:
 - 12~17% (now)
 - 18~>22% (longer term)

SRA and IP

PV ERA NET 3rd Joint Workshop – 29 04 2008

SRA contents summarised

technologies characterised

> Thin-film silicon

- positive impact of micro- and nanocrystalline silicon
- efficiency enhancement is major challenge
- typical stable total area module efficiency:
 - 6~9% (now)
 - 10~15% (longer term)

SRA contents summarised technologies characterised

Copper-indium/galliumselenide/sulphide (CIGSS)

- high performance & possibilities for multi-junction devices
- reduction of manufacturing costs is major challenge
- typical total area module efficiencies:
 - 9~12% (now)
 - 15~18% (longer term)

technologies characterised

Cadmium telluride

- low-cost potential
- positive impact of development of take-back and recycling systems

22

- efficiency enhancement is major challenge
- typical stable total area module efficiency:
 - 7~9% (now)
 - 10~15% (longer term)

technologies characterised

Novel and <u>emerging</u> technologies

polymer PV

dye PV

thermo PV

- current emerging technologies primarily candidates for very low cost or new application forms (i.e. not for high performance)
- first applications may appear in niche markets

technologies characterised

Novel and emerging technologies

- wide variety of new conversion principles and device concepts
- mostly aimed at very high efficiencies ("full spectrum utilisation")
- very important in view of long term potential of PV; long way to go to commercial applications
- also "supplier" to other technology families; e.g. efficiency boosters (spectrum converters) and super-high efficiency concentrator cells

technologies characterised

Concentrator technologies

- application form of choice for high cost/m², super-high efficiency cells
- only concrete way to system efficiencies >30% as yet
- manufacturing and applications now taking off
- unique application opportunities in sunny regions

BoS-components and PV systems

- inverter lifetime and reliability
- concepts and components for grids at high PV penetration levels
- storage technologies for small and large applications

SRA contents summarised selected R&D issues

Standards, quality assurance, safety and environmental aspects

- QA guidelines for the whole value chain
- LCA studies and recycling processes

selected research issues

Socio-economic aspects and enabling research

- non-technical costs and benefits of PV
- required skills base for a growing PV sector

Lessons learned

- SRA built on this consensus acts now as a broadly accepted reference document
 - For European Commission
 - For R&D Programming bodies
 - Lines up the different actors
- Message given becomes relatively complex
 - No "Silver Bullet" PV-technology
 - Development in all parts of the PV value chain are necessary
 - Parallel with ITRS-roadmap for Microelectronics
- The present document is mainly the result of a consensus between academia and industry; the other stakeholder (governments, regulatory bodies) have been much less involved.

Lessons learned: the Road Ahead

- The Implementation Plan, presently under preparation, will also establish a link to the policy stakeholders
- Implementation Plan has to provide link to largescale efforts and the inherent distributed character of Photovoltaics
 - Build further on a number of Centers of Excellence, not one large centralized body
 - Determine the detailed milestones (timescale is still rough)
 - Get linked to the Roadmaps developed by the US and Japan

Conclusions

SRA provides first consolidated PV R&D strategy on EU level

- reference document for PV R&D programming and for PV technology development
- SRA outlines possible development of PV technology in quantitative terms
 - valuable source of data for energy scenarios and policy making
- SRA is now ready for implementation plan

PV TP Steering Committee

PV TP Secretariat (EPIA, EUREC, JRC Ispra, WIP) & EU support through the PV Sec project

PV TP Mirror Group

EC officers (DG RTD, DG TREN & DG Enterprise)

