

#### The Power to Reduce CO<sub>2</sub> Emissions The Full Portfolio

**Barbara Tyran** 

**Director, Washington Relations** 

**International Energy Agency** 

May 15, 2008



#### **About EPRI**

#### Together...Shaping the Future of Electricity

- Founded in 1973 as an independent, nonprofit center for public interest energy and environmental research.
- Objective, tax-exempt, collaborative electricity research organization
- Science and technology focus--development, integration, demonstration and applications
- Broad technology portfolio ranging from nearterm solutions to long-term strategic research





## Large and Successful R&D Collaboration









- More than 450 participants in over 40 countries
  - Over 90% of North American electricity generated
- 66 technical programs
  - Generation
  - Power Delivery and Markets
  - Nuclear
  - Environment
  - Technology Innovation
- 1600+ R&D projects annually
- 10 to 1 average funding leverage
- Research is directed to the public benefit
- Limited regulatory, judicial and legislative participation



#### **EPRI's Role**



NationalEPRISuppliersLaboratoriesVendorsUniversities

**Depends Upon The Specific Technology or Discipline** 



#### Context

- Growing scientific and public opinion that CO<sub>2</sub> emissions are contributing to climate change...
- Priority of 110th Congress ...
- U.S. responsible for 1/4 of global CO<sub>2</sub> emissions...
- Electricity sector responsible for 1/3 of U.S. CO<sub>2</sub> emissions...
- General agreement that technology solutions are needed...



#### How can the electricity industry respond?



#### **Presentation Objective...Answer Three Questions**

- What is the technical potential for reducing U.S. electric sector CO<sub>2</sub> emissions?
- What are the economic impacts of different technology strategies for reducing U.S. electric sector CO<sub>2</sub> emissions?
- What are the key technology challenges for reducing electric sector CO<sub>2</sub> emissions?



#### **2008 Prism...**Technical Potential for CO<sub>2</sub> Reductions



\*Energy Information Administration (EIA) Annual Energy Outlook (AEO)

#### **Presentation Objective...Answer Three Questions**

- What is the technical potential for reducing U.S. electric sector CO<sub>2</sub> emissions?
- What are the economic impacts of different technology strategies for reducing U.S. electric sector CO<sub>2</sub> emissions?
- What are the key technology challenges for reducing electric sector CO<sub>2</sub> emissions?



## **Assumed U.S. Economy-Wide CO<sub>2</sub> Constraint**



- PRISM electric sector CO<sub>2</sub> profile most closely modeled by economy-wide constraint which:
  - Caps emissions at 2010 levels until 2020
  - Requires 3% decline beginning in 2020
  - Constraint in 2050 ~50% of 1990 emissions levels



## **Electricity Technology Scenarios**

|                                            | Full Portfolio              | Limited Portfolio                     |
|--------------------------------------------|-----------------------------|---------------------------------------|
| Supply-Side                                |                             |                                       |
| Carbon Capture and<br>Storage (CCS)        | Available                   | Unavailable                           |
| New Nuclear                                | Production Can<br>Expand    | Existing Production<br>Levels ~100 GW |
| Renewables                                 | Costs Decline               | <b>Costs Decline Slower</b>           |
| New Coal and Gas                           | Improvements                | Improvements                          |
| Demand-Side                                |                             |                                       |
| Plug-in Hybrid Electric<br>Vehicles (PHEV) | Available                   | Unavailable                           |
| End-Use Efficiency                         | Accelerated<br>Improvements | Improvements                          |



#### **U.S. Electric Generation – Full Portfolio**



The vast majority of electricity supply is CO<sub>2</sub>-free

Gas and non-captured coal are the only supply options paying a  $CO_2$  cost

Public Policy (RPS) can modify this economic allocation

Demand w/ No Policy

Demand Reduction



© 2008 Electric Power Research Institute, Inc. All rights reserved

#### **U.S. Electric Generation – Limited Portfolio**



© 2008 Electric Power Research Institute, Inc. All rights reserved

#### **Wholesale Electricity Price**



#### Increase in Real Electricity Prices... 2000 to 2050



© 2008 Electric Power Research Institute, Inc. All rights reserved.

# Full Technology Portfolio Reduces Costs of a CO<sub>2</sub> Emissions Reduction Policy by 60%



#### Value of R&D Investment

#### **Presentation Objective...Answer Three Questions**

- What is the technical potential for reducing U.S. electric sector CO<sub>2</sub> emissions?
- What are the economic impacts of different technology strategies for reducing U.S. electric sector CO<sub>2</sub> emissions?
- What are the key technology challenges for reducing electric sector CO<sub>2</sub> emissions?



#### **Transition to Low-Emissions Technologies**



- Enabling Efficiency, PHEVs, DER via the Smart Distribution Grid
- Enabling Intermittent Renewables via Advanced Transmission Grids
- Expanded Advanced Light Water Reactor Deployment
- Advanced Coal Plants with CO<sub>2</sub> Capture and Storage



#### **Developing Detailed RD&D Action Plans**











## 2008 EPRI Priority...Analysis to Action





#### **Electricity demand will grow...**

#### EIA 2008 Annual Energy Outlook

Preliminary report projects 1150
TWh (30%) increase in U.S.
electricity consumption by 2030.

 Greater than addition of new load equivalent to 2006 consumption of Texas, California, Florida, Ohio, Pennsylvania

#### ~13 New York metro areas!





#### Challenges in End-Use Efficiency Growth in Electronic Load

- Increase in electricity use by adding a 46" plasma and a set-top box:
  ~860 kWh/yr/household or 2.7% of US electricity Consumption

Plasma TV (~300W), Set-top Box (~30W)

 Increase in electricity use by adding one digital photo frame per household: ~Five 250MW generation plant



Digital photo frame (6W-15W)

By 2030 almost 30% of residential load will be "plug connected" (DOE/EIA Annual Energy Outlook 2007)



#### **Growth in Electronic Load**





## **Opportunities for End Use Efficiency**



Example of T&D Loss Reduction Measures

## kWh saved by Reducing T&D Losses by 10% is Equivalent to the kWh generated by 11GW of wind capacity @ 25% capacity factor

#### **Opportunities for End Use Efficiency** CFL as an Example



#### Replacing all incandescent bulbs with CFLs in a US household: ~1200 kWh/yr/household or 3.7% of US electricity Consumption



#### **Hyper-Efficient Technologies**





Variable Refrigerant Flow Air Conditioning



#### Ductless Residential Heat Pumps and Air Conditioners



LED Street and Area Lighting



**Heat Pump Water Heaters** 



**Efficient Data Centers** 



Hyper-Efficient Residential Appliances



#### Together...Shaping the Future of Electricity



Image courtesy of NASA Visible Earth