

Renewable Energy R&D Trends in Thailand

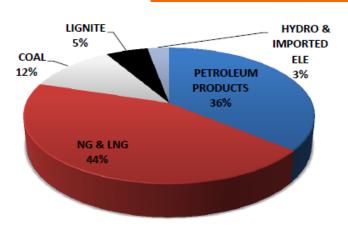
Dr.Twarath Sutabutr

Deputy Director-General

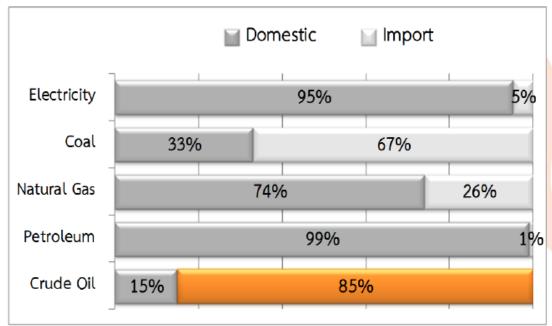
Department of Alternative Energy Development and Efficiency (DEDE)

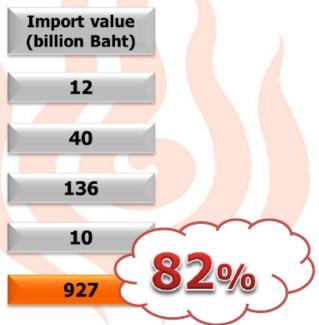
Thailand's Ministry of Energy

28 November 2012 Tangla HotelBeijing, PR China


Content

Thailand's Energy Situation 2010


Thailand's Alternative Energy Development Plan (2012-2021)


Science Technology and Innovation for RE Development Implementation Plan(2012-2016)

Thailand's Energy Situation 2011

Energy Consumption in 2011

Source: Department of Energy Business, Ministry of Energy

Thailand's Renewable Energy Development

Committed to the development of low-carbon society

Government
Funding
On R & D
Activities

Alternative Energy Development Plan (AEDP: 2012-2021)

Encouraging Private-Led Investment

Target 25 % of RE in Total Energy Consumption By 2021

_								
Solar	Wind	Small + Mini Hydro		Bio Energy	,	Biofuels	Others	
2,000 MW	1,200 MW	1608 MW	Biomass	Biogas	MSW	• Ethanol 9 Million I/d	• Tidal wave 2 MW	
100 ktoe (Heat)			3,630 MW	600 MW	160 MW	Biodiesel5.97 Million I/d	Geothermal1 MW	
(Fiede)			8,200 ktoe (Heat)	1,000 ktoe (Heat)	35 ktoe (Heat)	 New fuel replace diesel 		
						25 Million I/d		

R&D Needs for RE Development

25% of RE in Total Energy consumption

R&D: 5-6%

- -To Develop 2nd 3rd generation biofuels
- -To increase local content &development existing technologies
- -To create new technologies & innovation

R&D Cooperation

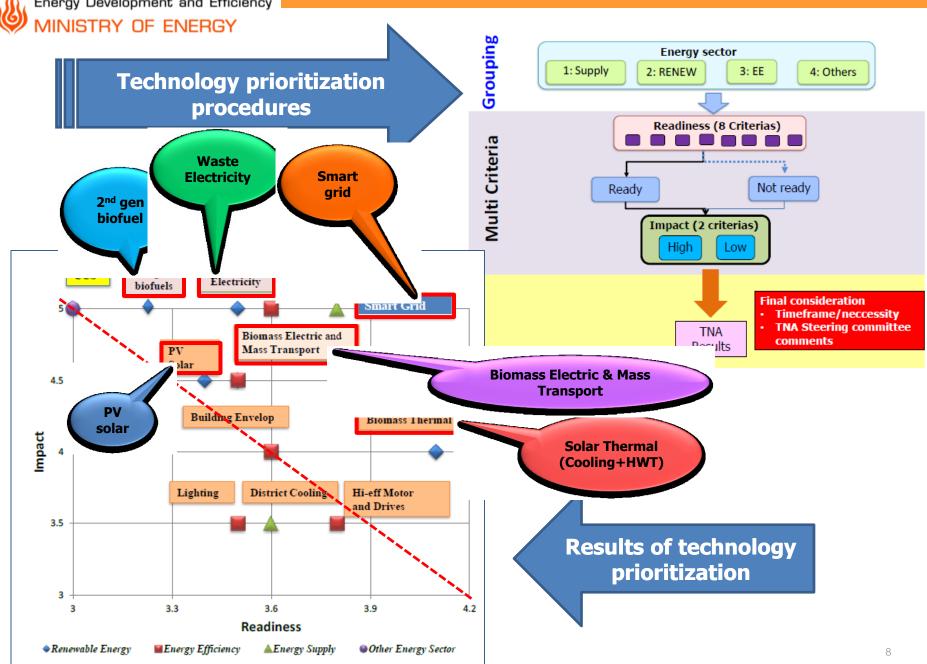
Cross-Ministerial Coordination

MOU on 13 Jan 2011: To integrate RE research plan

- To Establish a <u>committee</u> including a representative of related organizations for approving & monitoring the projects under the plan
- To draft an action plan on <u>Science Technology and Innovation (STI) for RE</u>
 <u>Development (2012-2016)</u>: comprise with 3 sectors
 - ▶ biofuel in transportation sector (Biodiesel,Ethanol & New fuel for replace diesel)
 - Electricity and Heat (Solar, Wind, Biomass, Biogas, MSW)
 - New energy (Hydrogen, Geothermal, Ocean&storage)

R&D Cooperation

The Ministry of Science and Technology(MOST) through the National Science Technology and Innovation Policy Office (STI)



Analyzed & prioritized the technologies requirement

"Technology Needs Assessments (TNA) and Technology Action Plans Report for Climate change Mitigation/Adaptation in Thailand"

Process & Results of Tech.prioritization

Action Plan on Science Technology and Innovation for RE Development (2012-2016)

Туре	No.		bι	udget (\$M)				
	of proje ct		201 3	201 4	201 5	201 6	Tot al	
1. Biofuel								Ì
1.1 Ethanol	37	8.6	22. 4	14. 9	13. 9	7.1	66. 9	
1.2 Biodiesl	17	2.6	3.9	2.9	1.8	0.7	11. 9	1
1.3 New fuel replace diessel	45	7.7	22. 3	22. 5	5.5	3.7	61. 7	
2. Electricity/He at								
2.1 Solar	30	0.8	4.6	3.2	3.1	1.9	13. 6	
2.2 Wind	12	2.0	1.5	0.8	0.5	0.3	5.1	
2.3 Biomass	23	6.1	4.5	3.2	1.6	0.6	16. 0	
2.4 Biogas Remark: Data as of Marc	19	0.6	1.7	1.9	3.5	0.6	8.3	
IZNS/eMSW12,the a	ction	10.13	r Ond hi	to l in § a	ո Օ ր Թ ե	atir g fo	2.5 _\	vis
3. New energy	6	0.2	0.8	0.1	0	0	1.1	

- ➤ 196 projects
- >36 organizations from 5 ministers(MOAC, MOEN, MOIN, MOST, MOE)
- research institutes, state enterprise and academic
- ➤ Total budget 187.1 Million\$ in 5 years (2012-2016)

MOAC: Ministry of Agriculture and Cooperatives

MOEN: Ministry of Energy

MOST: Ministry of Science&Technology

MOE:Ministry of Education MOIN: Ministry of Industry

Key Research Objectives

Ethanol

Cost-Reduction

Biodiesel

on-food focus

-To in<mark>crease su</mark>garcane & cassava vield

-non food (sweet sorgum&cellulosic ethanol)

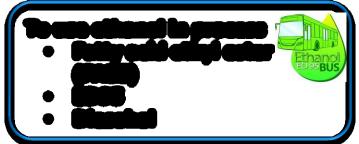
Non-food feedstock(Jatropha)

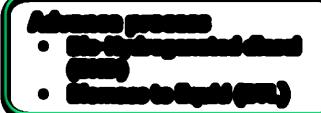
To increase cultivation efficiencies & logistic

To increase cultivation efficiency & logistic

-To increase utilization of CO2 from fermentation

-To develop production tech.& catalyst





7 New directions of fuel for diesel substitution

New Fuels Development Plan

Development Ran	elopment Ran Indicator		Phæe 2				
1. Research		2014					
1.1 ED95	- The recent hresult on the future new fuels	ED95					
12 Desohol	has been envisaged enough for the policy	Diesohol 2015					
1.3 FAEE	decision and is ready for the pilot project and	FAEE					
1.4 B- D	commercial development respectively.	BHD					
1.5 River and Sea Algae		Algae,Jatropha,	2016				
1.6 Jatropha		BTL	>				
1.7 BTL							
2 Filot Project and Fleet Test	-The emergence of the Filot Project at the Fleet	2014-2016					
	Test Level	-Pilot ED95 or Diesohol or FAEE					
	- The decision to select the most suitable newfuels	2015-2017					
		-Pilot Algae and Seaweed, Jathropa+BHD					
		2015-2017					
		-Pilot the BioJet Project(BHD)					
3. The Commercial	- The emergence of commercial-based factories with	Capacity			for		
Development	the generating capacity of 2 ml/day in 2018	commercial					
	- The increasing capacity to 25 ml/dayin 2021		purpose 1 1				
			8	9	20	21	
			2	6	15	25	

Electricity&Heat

Solar System Integration focus

- To develop hybrid system in remote area (PV+biomass)
- Building-integrated PV

 To study and develop low cost of solar hot water & cooling system in small scale

• To study PV module recycle process

To develop installation codes & safety performance standards

Wind

Low-wind speed focus

To develop microscale maps(200 x 200 m.)

- R&D low speed wind turbine (<=250kW)
- R&D energy storage such as Lead acid battery deep cycle

- -To develop installation codes , performance & safety standards
- -To study the grid-stability of wind farm& develop Real-time forecasting system

Biomass Small-scale(<1MW) focus

- R&D fast growing crops such as napier & miscanthus grass,
- To develop biomass collection machines: to chip&collect

• To develop the standards of biomass pellets & briquettes

• R&D Multi-feedstock gasifier (1 MW of pilot project has been developing)

Biogas Application to Transportation

 R&D biogas from co-digestion process (Waste-water+biomass)

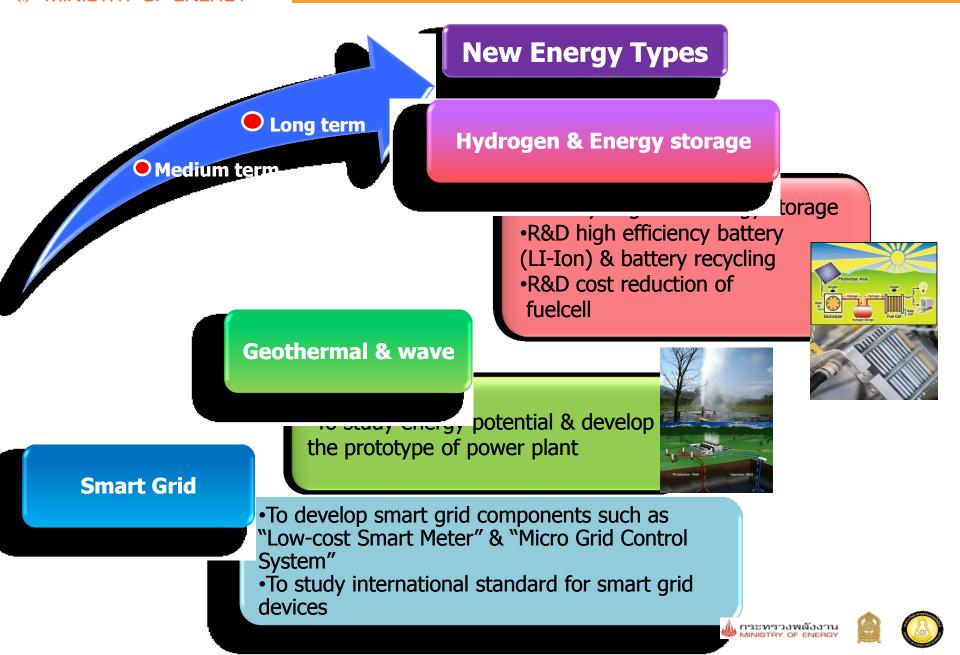
- To develop gas desulphurization system
- To develop performance & safety standards for equipments, installation & production

• To develop CBG for transportation sector

Municipal Solid Waste(MSW) Local Community focus

To develop waste separation technologies

 To develop small size of power production technologies (<=50 tons of waste/day)



• To develop RDF production technologies

Outcomes

R&D spend per GDP | 1%

!≈ 120,000 MB |

2011≈0.2%

Impacts

Economic & Social aspects

- Currency <u>saving on energy</u> import 18,500 M\$/year with in 2021
- Increase farmers' incomes 593 M\$/year in 2021 by incresing crops yield
- Stabilization of agricultural prices effect on farmers well being

Environmental aspect

Reduce CO2 emission

Technology aspects

- Consistency of RE research&development and **RE development policy**
- Increase the competitiveness of technologies and innovations

Thank you www.dede.go.th

