Thermal Energy Storage Today

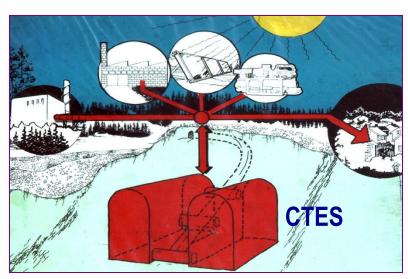
Halime Paksoy
February 14, 2013
Energy Storage Technology Roadmap
Stakeholder Engagement Workshop
Discussion Group 2

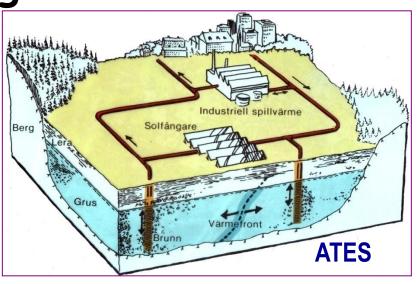
Thermal Energy Storage (TES)

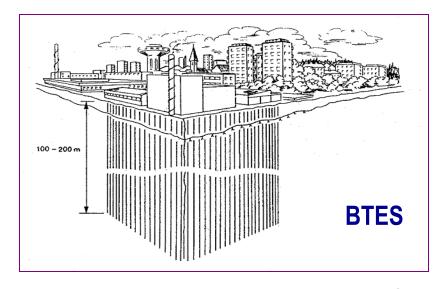
Sensible TES
 Water tank, Underground TES

 Storage Capacity ≈ 100 MJ/m³

Latent TES
 Phase Change Materials PCM
 Storage Capacity ≈ 300 - 500 MJ/m³

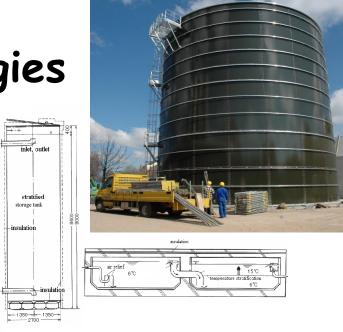



Thermochemical Reactions
 Absorption, adsorption, chemical reactions
 Storage Capacity ≈ 1000 MJ/m³

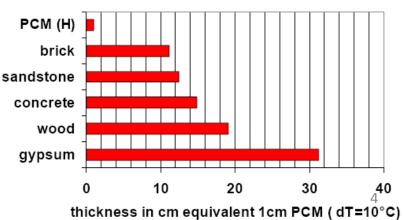


Seasonal TES Technologies

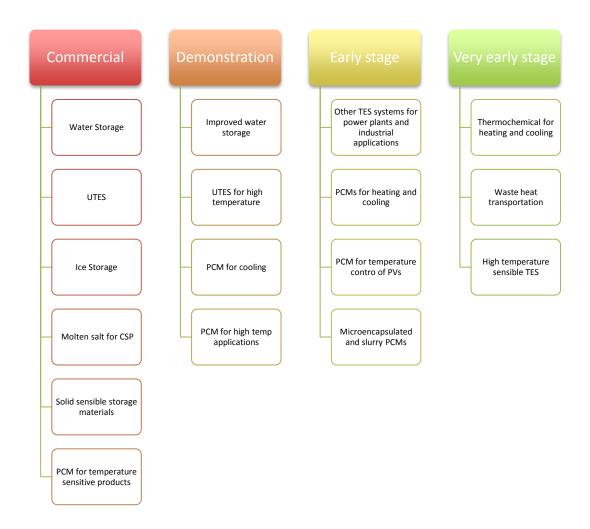
- Aquifer Thermal Energy Storage (ATES)
- Borehole Thermal EnergyStorage (BTES)
- Cavern Thermal Energy Storage (CTES)



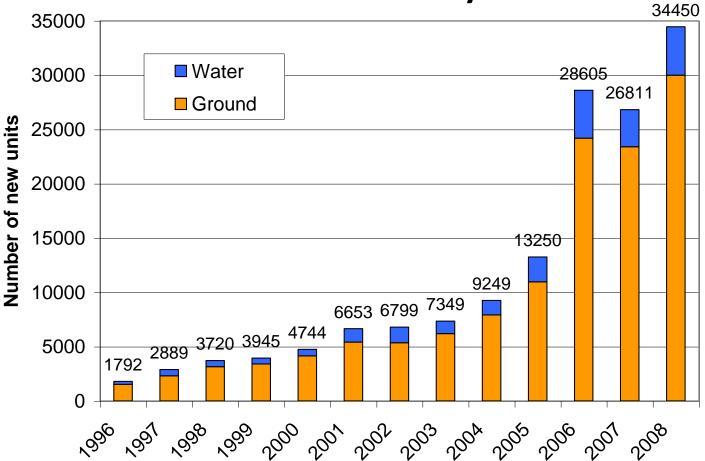
Source: Andersson, 2005


Short-term TES Technologies

- Water Tanks
- Phase Change Materials (PCM)
 - > Water/ice
 - > Organics
 - > Inorganics
 - > Composites
- Thermochemical reactions
 - > Absorption/Adsorption
 - > Reversible reactions
- Building materials and structures
 - Plaster, concrete mix,etc. + PCM
 - > Ceiling + PCM
 - Floor heating + PCM



Technology Readiness Levels of TES*

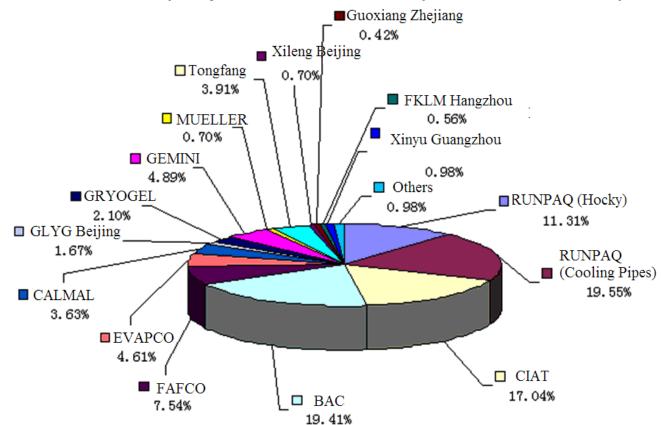

 Strategic Research Priorities for Cross-Cutting, European Technology Platform for Renewable Heating and Cooling

Status Countries

Sweden UTES Statistics

- Ground source heat pumps (GSHP)in general (close to half a million units): Heat from the underground (shallow geothermal), At least 12 TWh/year
- UTES in general (approx. 500 units): Stored and recovered heat: Approx. 450 GWh of heat and 400 GWh of cold annually
- Source: Geotec 2012: Geoenergi i samhället En viktig del i en hållbar energiförsörjning (Geoenergy in the society An important part of a sustainable supply of energy), Svensk Geoenergi, Report 2012:1.

Status Countries Germany


Sales numbers of GSHP in Germany

(after data from BWP)

Status Countries

Water and ice storage in China

- Started in 1990s
- About 833 projects in 4 municipalities and 22 provinces

Ice and water storage companies

Status Countries

Norway

- 3 TWh energy from UTES including ATES and BTES
- GSHP continues to grow
- Large scale BTES systems installed every year

Status of R&D in TES

- 15 countries cooperating
 - OECD NA, OECD EU, OECD Asia, China
- Some of the current R&D topics
 - Quality assurance of BTES systems
 - Novel compact material development
 - Methods for characterization of materials
 - TES for distributed energy systems
- 77 working teams (Sum of participants in on going annexes)
 - Total number of person months:1085*
 - Estimated annual budget: 8.04 MEuro*

^{*} Based on Task2442 "Compact thermal energy storage" activities only

Case Studies UTES

Arlanda Airport, Sweden

ATES, 10 MW and the turnover some 10GWh/year

IKEA Stores in Sweden

5 BTES, 1 ATES, store size varies between 25 and 35 000 m² and have an equal heating and cooling load demand of 1 000-1 300 kW.

Xylem Emmaboda, Sweden

HT BTES for waste heat from industry, 800 kW capacity

Richard Stockton College, USA

ATES, Thermal Energy stored: 2,025 MWh/year

Nydalen Industrial Park, Norway

BTES, heat output 6.0 MW, cooling capacity: 9.5 MW

Post terminal building, Norway

BTES, 4 MW capacity, area of building 100,000 m²

Case Studies Ice/Water Storage

Harumi DHC, Japan

Water storage 19000 m³, Building area: 456,000m²

Employed Population: 20,000

- China Pavilion for Shanghai World Expo 2010
 Building area 160100m², total refrigerating capacity 8.7 GW
- China Petrochemical Corporation Research

Building area is 175000m², total refrigerating capacity 10.5GW

Conclusions

What do we need for the storage roadmap?

- Determine maturity of TES technologies
 - UTES
 - High penetration in some countries
 - Legal framework readiness
 - Ice/water storage
 - Favorable electricity tariffs
 - Peak shaving for high cooling loads
- Identify breakthroughs needed
 - PCMs
 - Thermochemicals
- Vision for deployment of TES 2050??
 - Consider needs for future energy systems
 - Milestones??