

IEA Storage Workshop February 2013

Grid Connected Energy Storage for Residential, Commercial & Industrial Use
- An Australian Perspective

Tony Vassallo

Faculty of Engineering & Information Technologies

&

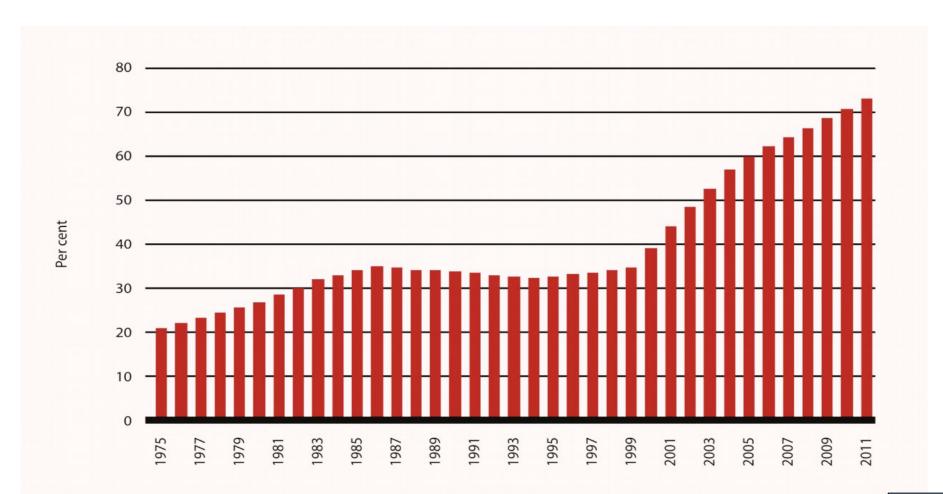
EsToRen

Energy Storage Research Network
University of Sydney

Electricity is the only major commodity that cannot easily be stored in large quantities

- Electricity is the only major commodity that cannot easily be stored in large quantities
- Lack of storage drives wholesale electricity price volatility from -\$100 to \$12,500 /MWh

- Electricity is the only major commodity that cannot easily be stored in large quantities
- Lack of storage drives wholesale electricity price volatility from -\$100 to \$12,500 /MWh
- Electricity supply system must be sized to cope with maximum demand, which may only represent a few hours/year


In Australia, peak demand is very costly

About 15 per cent of the national electricity network caters for peak periods. \$11 billion worth of infrastructure is only being used for 100 hours – or four days - a year⁶.

What's driving growth in peak demand?

FIGURE 1: AUSTRALIAN HOMES WITH AN AIR-CONDITIONER OR EVAPORATIVE COOLER, 1974-75 TO 2010-11

Source: ENA

- Electricity is the only major commodity that cannot easily be stored in large quantities
- Lack of storage drives wholesale electricity price volatility from
 -\$100 to \$12,500 /MWh
- Electricity supply system must be sized to cope with maximum demand, which may only represent a few hours/year
- Storage can link variable generation with variable load

Transmission grids provide energy where it is needed

Energy storage provides energy when it is needed

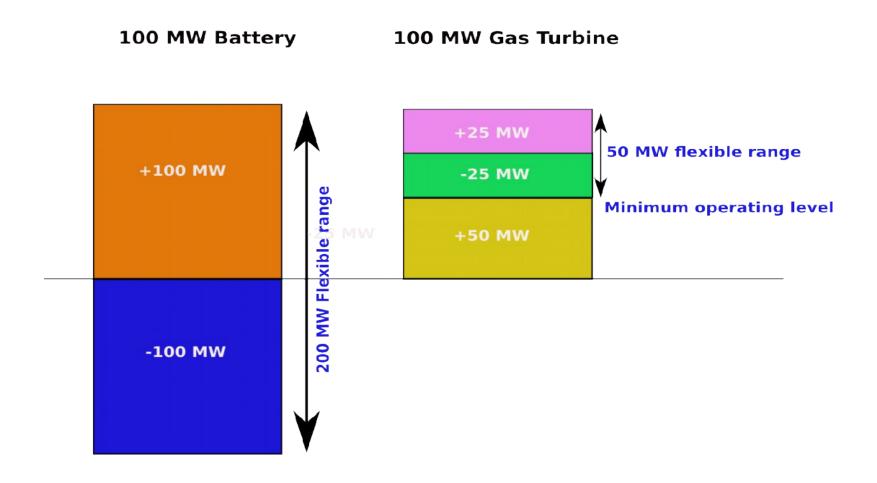
Dr Imre Gyuk – Program Manager, Energy Storage, US Dept of Energy

Valuing energy storage

- Energy (minutes & hours)
 - Diurnal load shifting
 - Renewables integration
 - Peak shaving
 - Slow frequency response (FCAS)
 - Spinning reserve
- Power (milliseconds & seconds)
 - Power quality
 - Frequency control
 - Fast FCAS

Ancillary services to maintain grid stability

- Supply must meet demand
 - If wind/solar power output goes up, other generators must compensate
 - This occurs at the second, minute and longer timescales
- Even without intermittent generation, "ancillary services" are needed to balance load
 - 6 second raise/lower
 - 60 second raise lower
 - Delayed raise/lower (5 minute)
- Increased intermittency requires more regulation

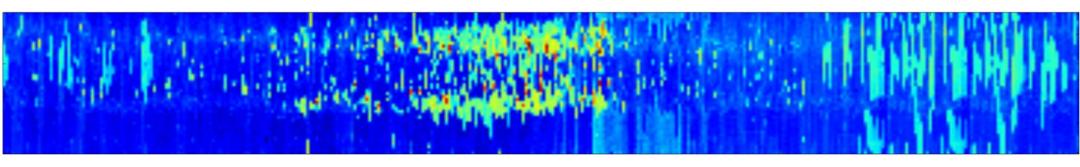

Battery or Gas Turbine for Ancillary Services

100 MW Gas Turbine

Battery or Gas Turbine for Ancillary Services

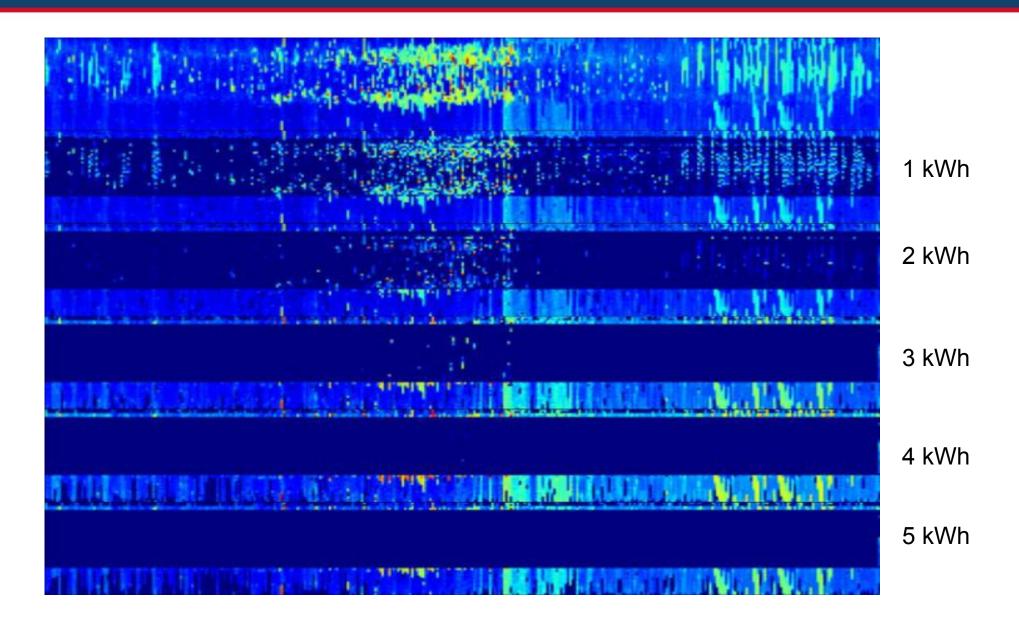
Storage costs – two main aspects

- Stored energy ['fuel tank']- \$400-4000/kWh depends on chemistry
- Power delivery ['engine'] \$300-600/kW [DC/AC, plus associated systems more silicon]
- High power, fast charge/discharge means greater cost in power converters
 e.g. seconds, minutes
- High energy hours, e.g. 2-4 hr charge/discharge means greater cost in cells/stacks
- Battery cost is not the important figure, but cost of stored energy, which is a function of ...

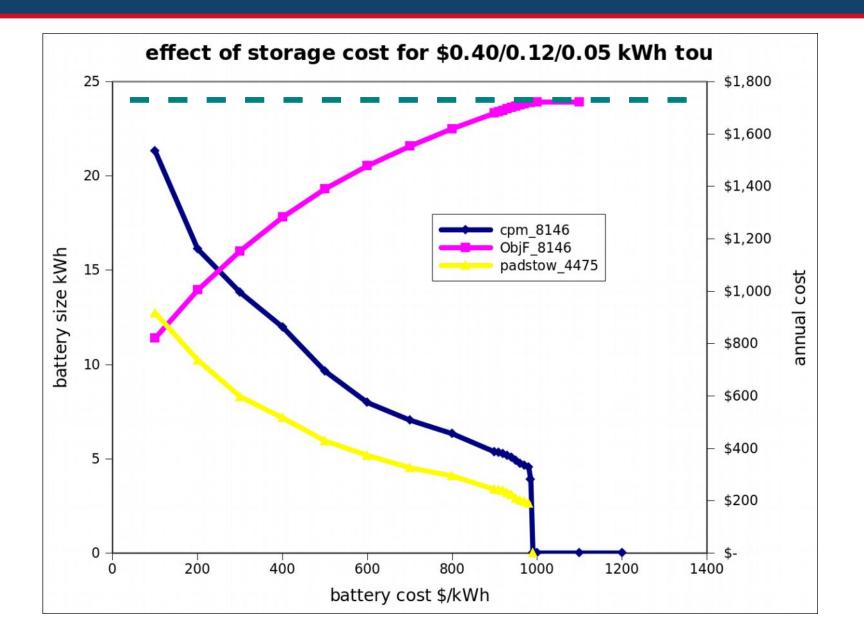

How much does it cost to store electricity?

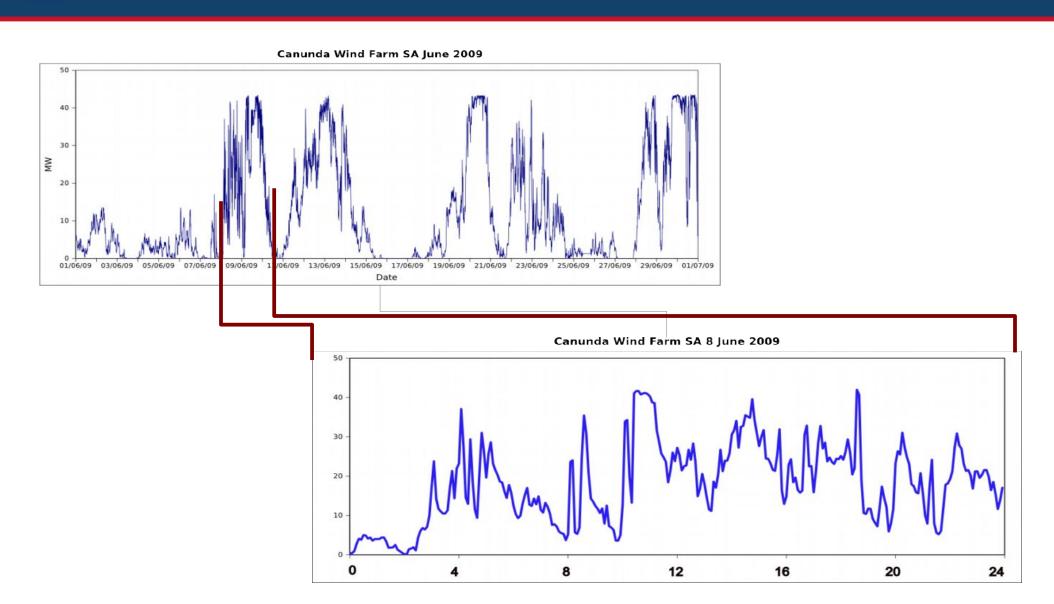
- Capital cost of storage system
 - Storage + power conditioning
- Lifetime number of cycles
- Efficiency of storage
- 0&M...

\$/kWh	efficiency	cycles/ day	lifetime	depth of discharge	lifetime throughput	\$/kWh
1000	75%	1	10 y	100%	2737 kWh	0.36
500						0.18
500			20 y		5475 kWh	0.09



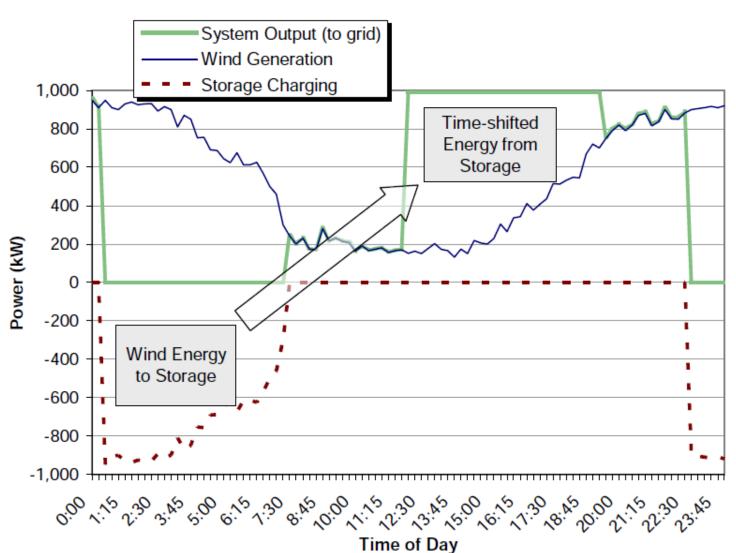
Residential demand – hb_146 1/1/2010 to 31/12/2010




Effect of storage on peak demand

Effect of battery cost on optimum capacity

Variability in Canunda wind farm output



Why combine energy storage with wind power?

- Time shift output
- Reduce ramp rates
- Reduce losses (mlf)
- Reduce connection costs

Time shift output

Source: Sandia 2010

Ramp rates

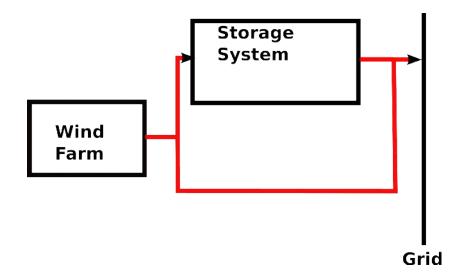
- Reduce ramp rate
 - Currently 3 MW/min or 3% max output (in Australia)
 - Considering change to 6 MW/5 min
 - Many wind farms exceed this for 2-5% of time

Losses & connections

- Reduce losses
 - Losses proportional to current²
- Reduce connection costs
 - Cheaper to connect e.g. 65 MW high utilisation than 100 MW low utilisation

Flow batteries for wind farms?

- Electrolyte flows over non-reactive electrodes
- Energy is stored in the electrolyte
- Analogous to rechargable fuel cells regenerative fuel cells
 - Zinc bromine
 - Vanadium
 - Polysulfide bromine
 - Many different forms


Why flow batteries?

- Total/substantial control over energy/power ratio
- Energy ~ volume of electrolyte
- Power ~ area of electrode
- Potential for low cost in some chemistries

Aim of the Study

- What size (cost) of storage to reduce ramp rates?
- What size (cost) of storage for time-shifting?

Modelling storage for wind farms

- <5 min wind farm data not widely available
 - Used 5 min data for ramp rates
 - Battery SoC, lifetime, efficiency
 - Energy (MWh) & power (kW) cost estimates
- Used Simulink
 - Time shifting used multiple linear regression to estimate forward demand [using demand as proxy for price]
 - High forward demand = discharge battery + wind output [0.9 for 30 min/24 h]
 - Medium forward demand = wind output only, neither charge/discharge
 - Low forward demand = priority to charge storage

Wind farm data

- 4 wind farms in SA used for ramp rate control
 - Snowtown 99 MW
 - Clements Gap 57 MW
 - Hallet 1 95 MW
 - Hallet 2 71 MW
- Snowtown used for time-shifting analysis
 - 10% DR, 20 y life, 30% tax rate, SLDeprec

Modelling Results – Wind Ramp Rate Mitigation

- Modelled various configurations of Li-ion, VFB & NaS
 - Objective achieved at lowest capital cost by 1 h VFB
- Key driver for capital cost is discharge duration.
 - Incorrect optimisation can more than double capital cost
- Natural smoothing effect between nearby wind farms.
 - Centralised rather than individual storage systems are a more efficient solution → >80% reduction in capital costs
 - [Centralised systems also achieve greater GHG emission reductions]

Cost to limit >6MW/5 min to <1%

Wind Farm	MW	6 MW/5 min (%)	Storage cost ('000s/MW)#
Snowtown	99	95	65
Clements Gap	57	98	34
Hallet 1	95	95	54
Hallet 2	71	97	36
Combined	322		18

Lowest cost

Time shifting

- Aim: Store energy generated during off-peak demand and discharge during peak demand to achieve greater value
 - [Snowtown received average of \$17.8 /MWh cf \$38.80/MWh pool price]
- Dispatch decision controlled by demand forecasting model
- Storage can increase revenue by >50%
- Optimal ESS for Snowtown is 60 MW, 4 h capacity
- -ve NPV at current costs, break-even at ~\$75/kWh
- Analysis only valid for Snowtown and pool prices 2009-2011

Conclusions & observations

- Large range of storage applications from sub-second to multi-hour
- Value is there, but costs need to reduce
 - Regulatory environment needs changes
- Flow batteries well suited to wind farm output
 - 4-6 hr capacity
 - [Zinc-Br more challenging than VRB because of need for strip cycle]
- Key challenge for time-shifting economics is dispatch algorithm
 - attempt to forecast price or use standard approach(s)?
 - perfect foresight can easily double or triple revenue

Acknowledgements

Marija Petkovic