Robert Schnapp
Head of Coal, Renewables,
Electricity, and Heat Section
Energy Data Centre

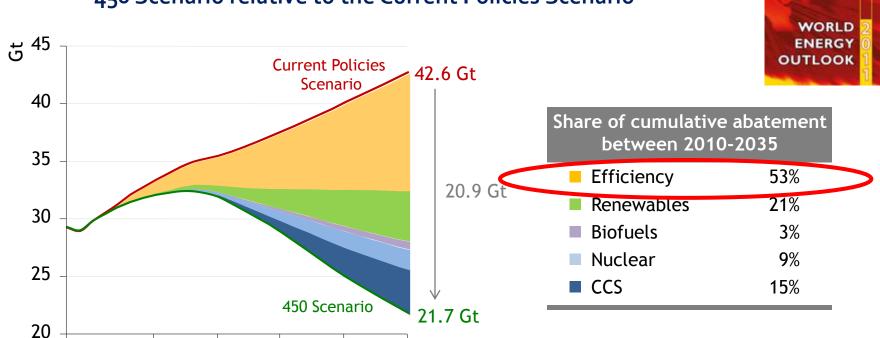
Energy Statistics for Energy Efficiency Indicators

Joint Rosstat – IEA Energy Statistics Workshop
Moscow, February 2012
iea

International Energy Agency

2008

Energy Efficiency is key for any sustainable future


World energy-related CO₂ emission savings by technology in the 450 Scenario relative to the Current Policies Scenario

2020

2025

2030

2015

More than 50% of the reduction of CO₂ emissions should come from energy efficiency

2035

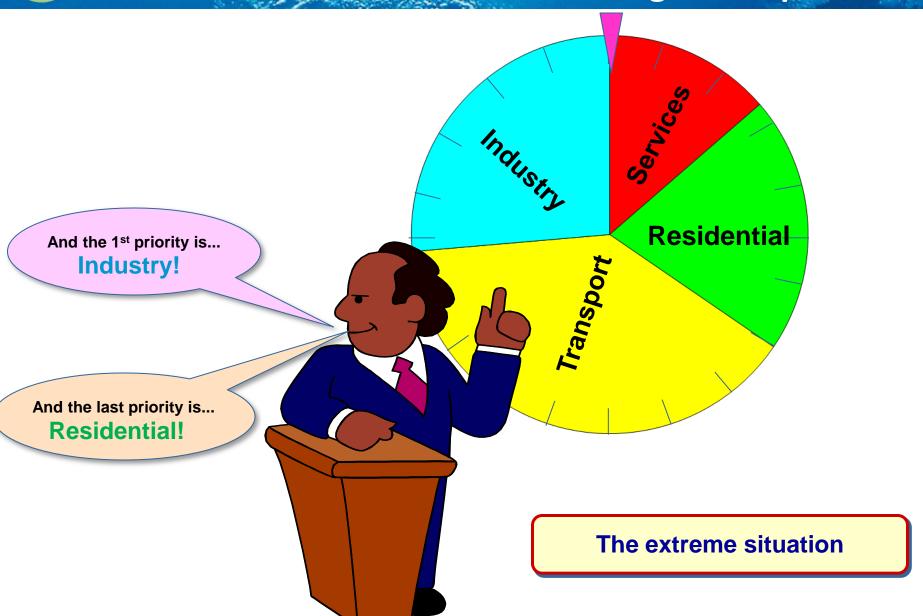
Benefits of energy efficiency

- Environmental benefits by reducing greenhouse gas emissions and local pollution
- Increased energy security
- Reduced investments in energy infrastructure
- Increased competitiveness
- Improved consumer welfare
- Job creation

Countries are adopting ambitious targets

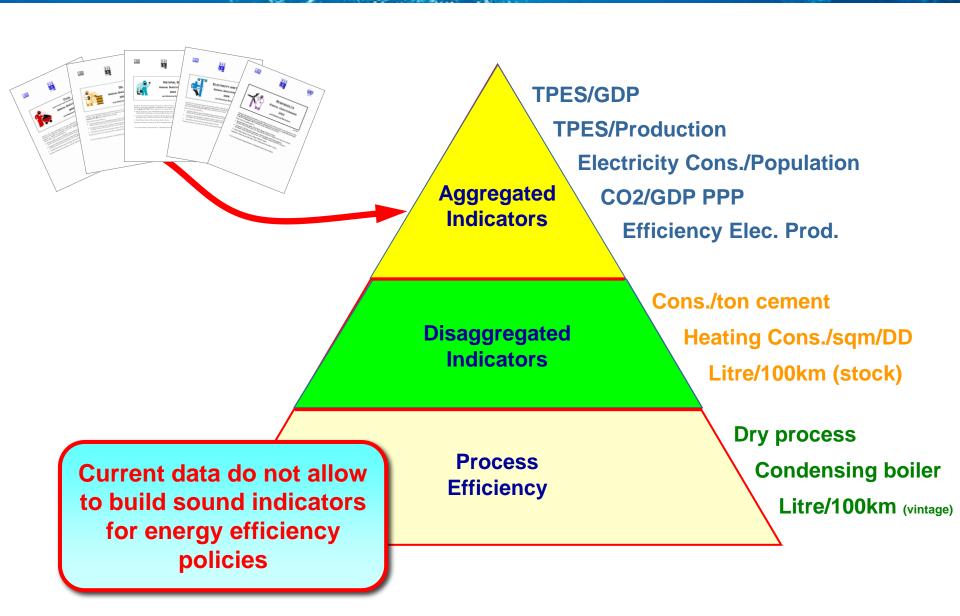
- China Reduce CO₂ intensity of the economy by 40-45% between 2005 and 2020
- India Reduce CO₂ intensity of the economy by 20% between 2005 and 2020
- European Union

20-20-20 programme energy efficiency to reduce energy consumption by 20% by 2020

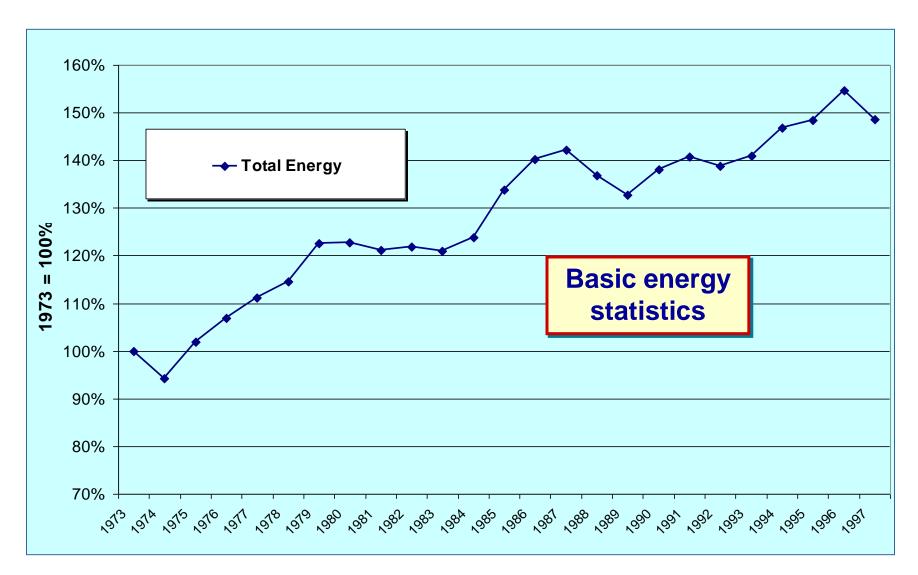

How to identify priorities for energy efficiency policies?

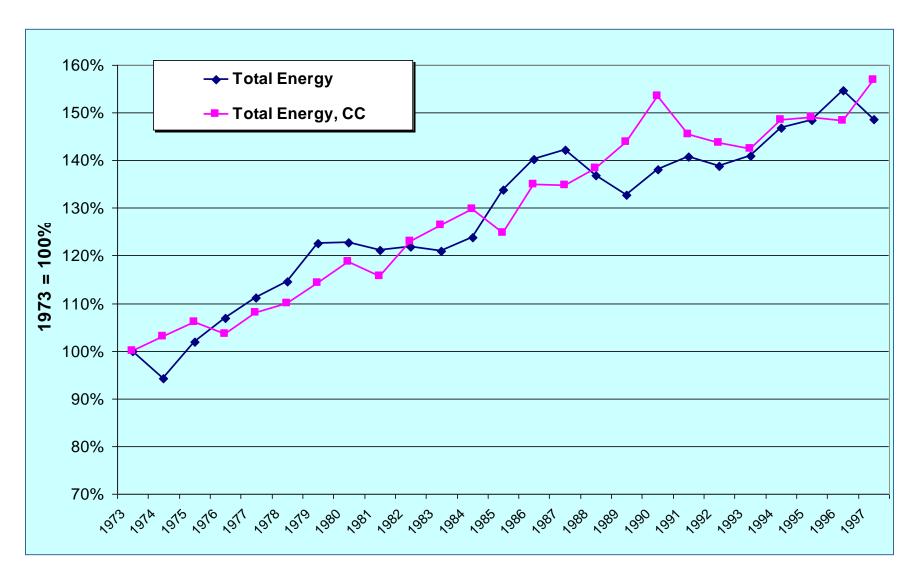
Assess progresses and failures of policies?

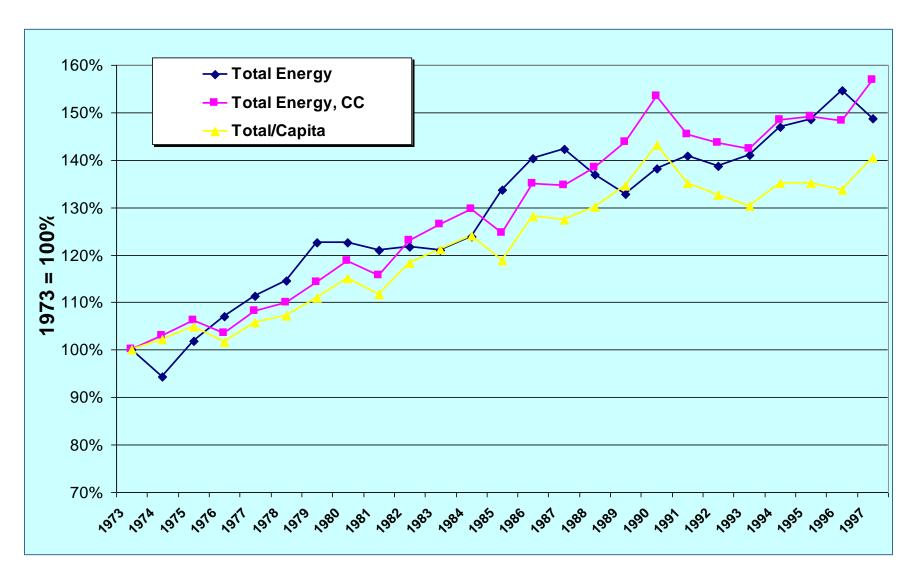
And verify if countries meet their targets?

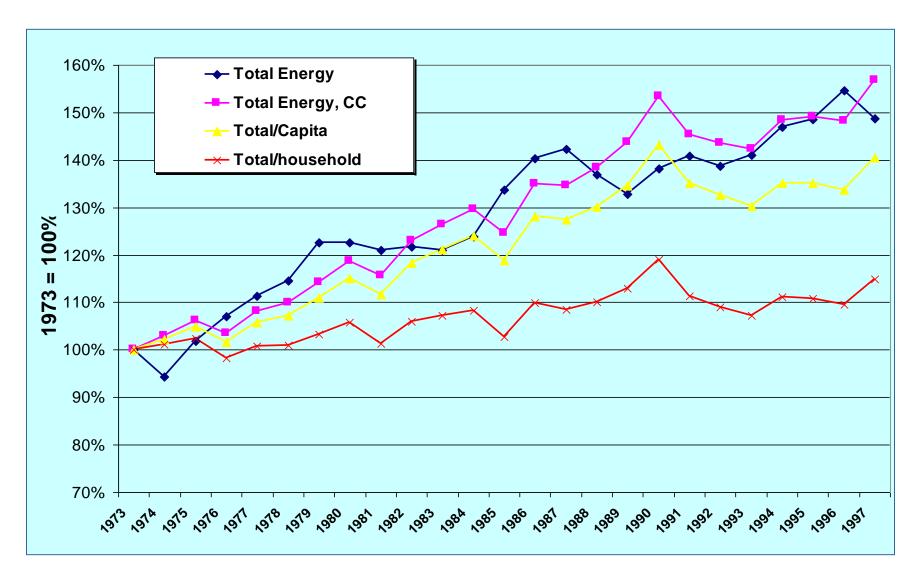


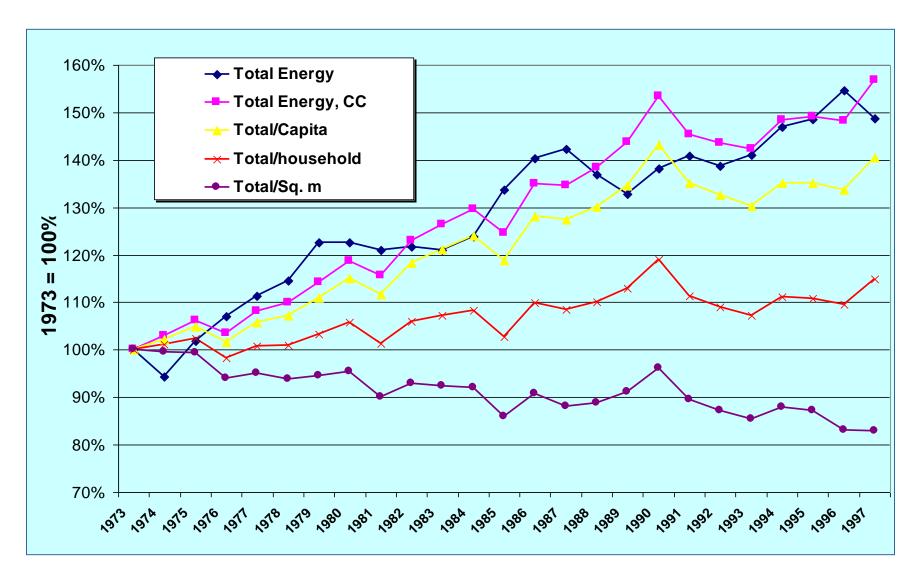
Lack of proper indicators could lead to major uncertainties for formulating action plans

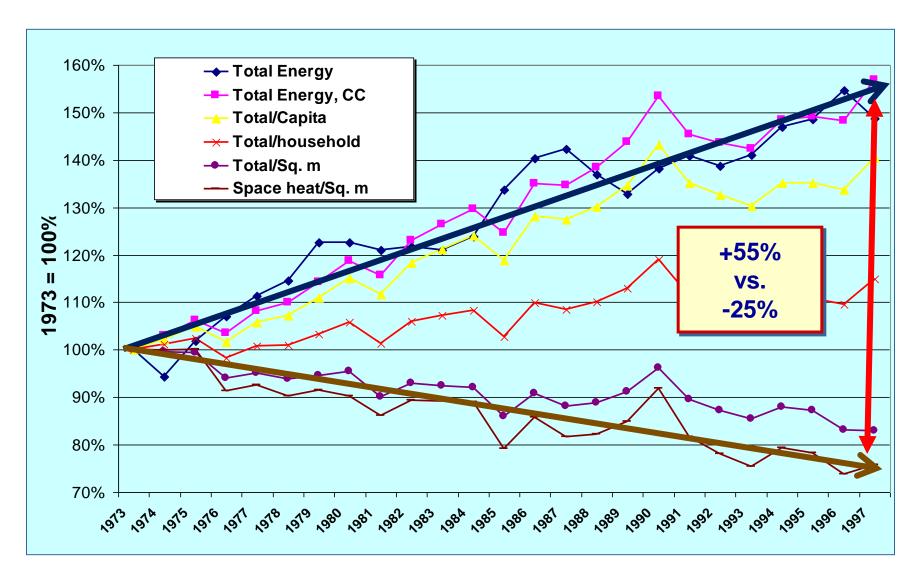


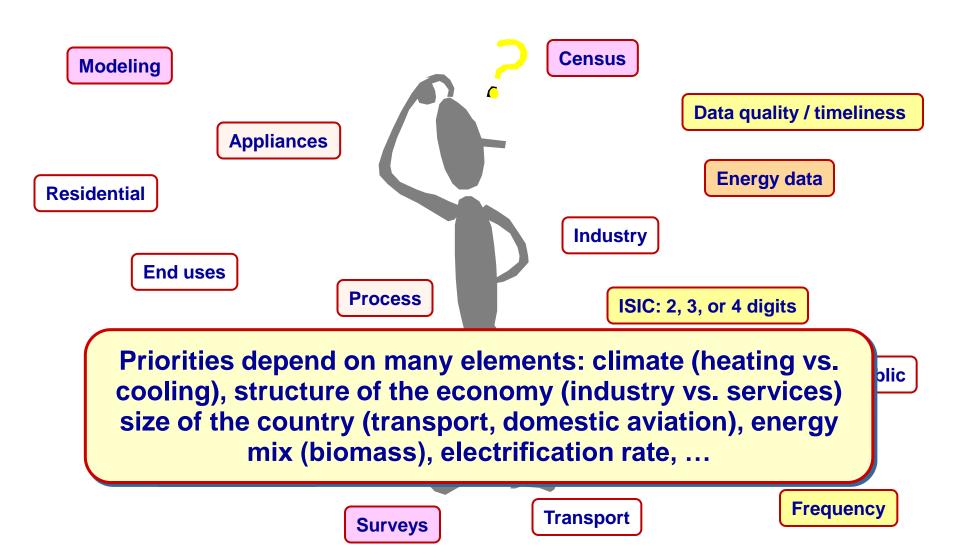

Why a need for more detailed data

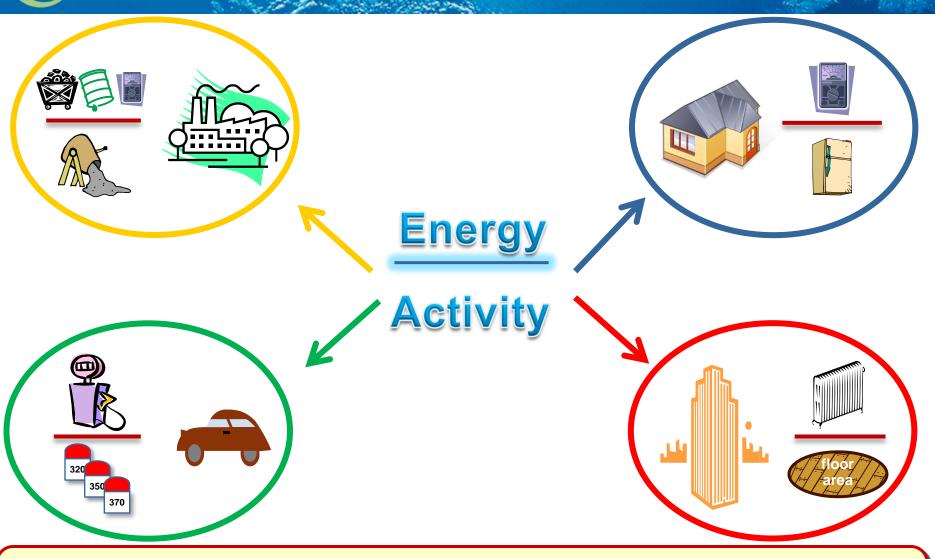




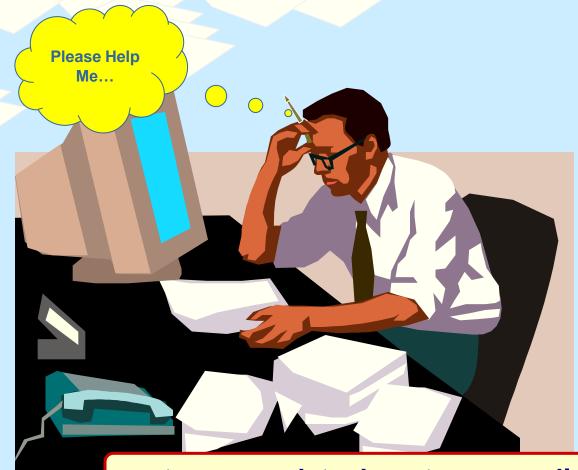








What data for what indicators


What data for what indicators (cont.)

Other indicators include energy/energy ratio (efficiency of a furnace) or activity/activity ratio (electrification rate)

Do not over collect...

... too many data do not necessarily help...

How to unlock the potential of energy efficiency?

Understand trends in energy consumption

Design policies and measures to unlock the potential

Check policy effectiveness

Assess the potential to improve energy efficiency

International The IEA has defined a minimum set of data to be collected

Jears 107A. Joseph	Energy Efficiency Indicators Template country name
MACRO ECONON	1IC DATA
COMMODITIES	
INDUSTRY	energy-cor uming industries Energy
SERVICES	ories Consumption
RESIDENTIAL	end-uses and selected அறிவிக்கு செர்ப்பு
TRANSPORT	data data
ELECTRICITY GENERATION	Electricity generation from combustible fuels and efficiencies
BASIC INDICATORS	Predetermined set of aggregate energy and activity indicators
SUPPORT TOOLS	
USER REMARKS	To incorporate comments associated to the data from the individual sheets
DATA COVERAGE	Generates a graphical summary of data coverage (completed vs. expected)
SINGLE INDICATOR GRAPHS	To generate a graph for one energy indicator
MULTIPLE INDICATORS GRAPHS	To generate a graph comparing trends from multiple indicators
CONSISTENCY CHECKS	To run the integrated consistency checks

List of macro economic data to be collected

Structural activities

- Population
- Employment
- Dwellings
- Heating and cooling degree-days
- Exchange rate and purchasing power
- Final consumption
- GDP
- Value-added by sector

INDUSTRY

- Energy consumption by fuel type
 - Oil and petroleum products
 - Natural gas
 - Coal and Coal Products
 - Combustible renewables and waste
 - Heat
 - Electricity
 - Other
- Value-added

- 19 Major ISIC categories
 - ISIC 01-05 Agriculture, hunting, fishing and forestry
 - ISIC 10-14 Mining and quarrying
 - ISIC 15-37 Manufacturing (each sub-sector individually)
 - ISIC 40-41 Electricity, Gas and Water
 - ISIC 45 Construction
- Derived indicators:
 - Energy/value-added

COMMODITIES PRODUCTION

Physical production for four major manufacturing sectors

- ISIC 21. Paper and paper products
- ISIC 24. Chemicals and chemical products
- ISIC 26. Other non-metallic mineral products
- ISIC 27. Basic metals

Efficiency indicator:

Energy Intensity: energy use/production

The industry sector

4	Α			N	0	Р	Q	R	S	Т	U	V	W
1		COMMODITI	IEC	1999	2000	2001	2002	2003	2004	2005	2006	2007	
2	Menu	Legend Ch COMMODIT											
3	Wichia	Production of commodities be	maion										
4	21	21: Manufacture of paper and paper products	TVISIUII										
5	⊽	Pulp	Mt	0.88	1.03	1.21	1.39	1.17	1.11	1.16	1.15	0	
6	V	Chemical pulp	Mt	.0.39	0.40	0.41	0.61	0.63	0.64	0.67	0.69	0	
7	~	Mechanical pulp	Mt		0.36	0.54	0.54	0.45	0.38	0.39	0.37	0	
8	V	Recovered Paper	Mt	0.37 1.54	1.54	1.63	1.63	1.92	2.18	2.41	3.02	0	
9	~	Inked	1	0	0	0	0	0	0	0	0	0	
10	~	De-inked	Mt		0	0	0	0	0	0	0	0	
11		structural impact - index		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	
12		·			\								
13	~	Paper and paperboard	Mt		2.84	2.67	2.65	3.09	3.10	3.24	3.89	0	
14	~	Household + Sanitary Paper		0.19	0.23	0.20	20	TO THE	0.40	0.20	0.22	0	
15	~	Newsprint	JIN.	0.41	0.46	0.47					0.42	0	
16	~	Printing + Writing Paper	lvit	0.50	54	0.55		日间的		ากก	0.66	0	
17	~	Wrapping + Packaging Paper + Paperboard		1.48	J1	1.43					2.59	0	
18	~	Other			0	0.02		押		a E	0.01	0	
19		structural impact - index		411	#N/A	#N/A	#			1 11 7	#N/A	#N/A	
20			<u> </u>					単片を					
21	24	24: Manufacture of chemicals and chemical produc						A	R	6 1			
22	✓	Ethylene	Mt	48.42	53.80	53.80		IILH	ΙЦΕ		62.31	0	
23	~	Propylene	Mt	14.53	15.68	16.31		13/21			18.31	0	
24	~	BTX	Mt	0	0	0		YAV			0	0	
25	~	Ammonia (NH3)	Mt	1.72		1.80	6		ME		1.93	0	
26	~	Butadiene	Mt	0		0					0	0	
27		structural impact - index		AM/A		#N/A					#N/A	#N/A	
28	0.0	20.44 5 2 5 4 2 11 1 1		7		시							
29	26	26: Manufacture of other non-metallic mineral prod		6	_ //	V							
30	~	Cement	Mt	7	1 1	7.50	7.55	8.00	8.00	9.00	- 5		Π
31 32	7	Clinker	Mt		M	0	0	0	0	0	0	Z ,	H = H
33	•	Cement production	Mt			0	0	0	0	0	0		H H
34		structural impact - index		:	\U\		#N/A	#N/A	#N/A	#N/A	#N/A	A	HHH
35	27	27: Manufacture of basic metals									— ()	(,)	$H = H_{\rm b}$
36	∠(▼	Crude Steel	Mt	8.17	7.13	7.03	7.53	7.54	7.41			<u> </u>	
37	~	Basic Oxygen Furnace production	Mt	0.17	7.13	7.03	7.53	7.54	7.41		39		-11 11
38	~	Electric Arc Furnace production	Mt	0	0	0	0	0	0				11 11
39	V	Direct Reduced Iron	Mt	0	0	0	0	0	0	_	=		-11 - 11
40	V	structural impact - index	IVIL	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A				
41		Sudetural impact - muex		#WA	#N/A	#N/A	#N/A	#WA	#N/A	MINA	WITH.		-
41													

SERVICES

- Energy consumption by fuel type
 - Climate corrected
- End-uses
 - Space heating
 - Space cooling
 - Lighting
 - Other building energy use
 - Non-building energy use (e.g. street lighting)
- Floor space
- Derived indicators:
 - Energy consumption/floor space
 - Energy consumption/value-added

The services sector

4	Α		OEDV/JOE/		N	0	Р	Q	R	AS -	J	U	V
П			SERVICES	5	1999	2000	2001	2002	2/			2006	2007
Ī	Menu	Legend	Check all/none						0	MINI	YIYI	7	
8										11111	A + A + A		
9		Space Hea	ting						- 111	11111			
0		Oil & Petrole	eum Products	PJ	0	0	0	0	- 111	11111		0	0
1		Natural Gas		PJ	0	0	0	0		11111			0
2		Coal & Coal		PJ	0	0	0	0			V/W	6	0
3		Combus. Re	newables & Waste	PJ	0	0	0	0	0	0	0	0	0
4		Heat		PJ	0	0	0	0	0	0	0	0	0
5		Electricity		PJ	0	0	0	0	0	0	0	U	0
6		Other		PJ	0	0	0	0	0	0	0	0	0
7	~	Total		PJ	0	0	0	0	0	0	0	0	0
8		Total (clima	ate corrected for 1990-2007)	PJ	#N	$\overline{}$		_ A	#N/A	#N/A	#N/A	#N/A	#N/A
9													
0		Space Coo											
1			eum Products	PJ				0	0	0	0	0	0
2		Natural Gas		PJ				0	0	0	0	0	0
3		Coal & Coal		PJ				0	0	0	0	0	0
4			newables & Waste	PJ				0	0	0	0	0	0
5		Heat		PJ				0	0	0	0	0	0
6		Electricity		PJ				0	0	0	0	0	0
7		Other		PJ				0	0	0	0	0	0
8	~	Total		PJ				0	0	0	0	0	0
9		Total (clima	ate corrected for 1990-2007)	PJ	#			A	#N/A	#N/A	#N/A	#N/A	#N/A
0													
1		Lighting							-				
2		Electricity		PJ	0	0	0	0	(0
3		Other		PJ	0	0	0	0	(0
4	~	Total		PJ	0	0	0	0	(0
5													
6			ling Energy Use in Services Sector								6111	2	
7			eum Products	PJ	19.33	19.40	18.23	19.48	19.21				0
8		Natural Gas		PJ	44.22	44.76	38.61	39.15	39.41				0
9		Coal & Coal		PJ	1.92	2.85	3.82	3.70	3.75				0
0			enewables & Waste	PJ	0.42	0.42	0.42	0.42	0.43	0.43	0.43	0.50	0
1		Heat		PJ	0	0	0	0	0	0	0	0	0
2		Electricity		PJ	139.42	144.19	159.93	166.55	166.41	165.98	168.11	168.10	0
3		Other		PJ	0	0	0	0	0	0	0	0	0
4 5	~	Total		PJ	205.31	211.62	221.01	229.30	229.22	230.21	233.45	239.00	0

RESIDENTIAL

End-uses

- Space heating
- Space cooling
- Water heating
- Cooking
- Lighting

Appliances

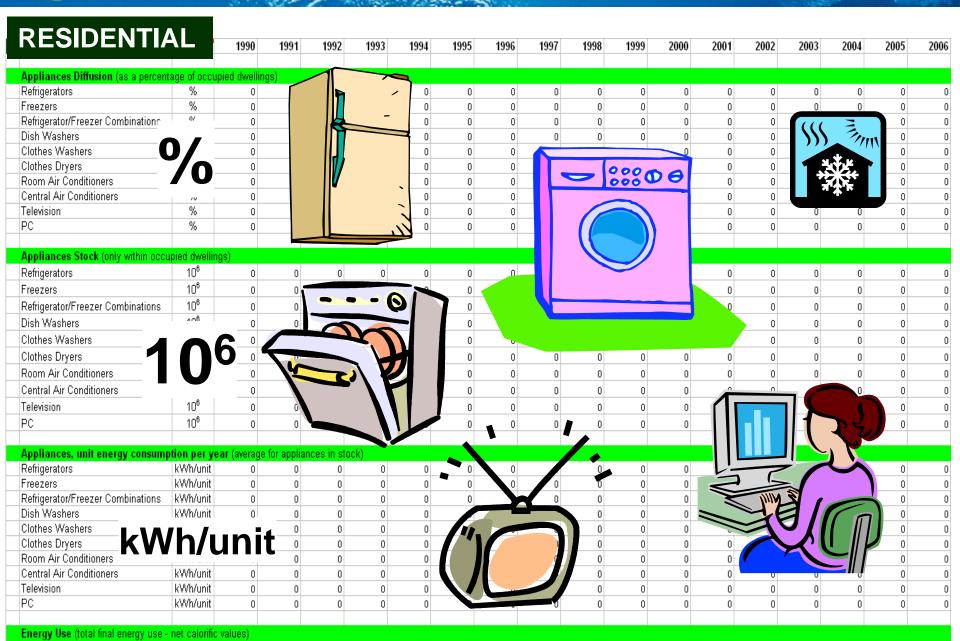
- Refrigerator
- Freezer
- Dishwasher
- Clothes washer
- Clothes dryer
- TV
- Computers

Fuel consumption by fuel type

Climate corrected

Appliance stock

Appliance diffusion


Units per dwelling

Efficiency indicators

- Energy consumption per unit
- Energy per floor area

The residential sector

TRANSPORT

- Transport modes
 - Road
 - Rail
 - Water
 - Air
- Type of transport
 - Passenger
 - Freight
- Type of road vehicles
 - Cars, SUVs and personal light trucks
 - Two and three-wheel motorcycles
 - Buses
 - Freight & Commercial road transport

TRANSPORT

Activity and Structure

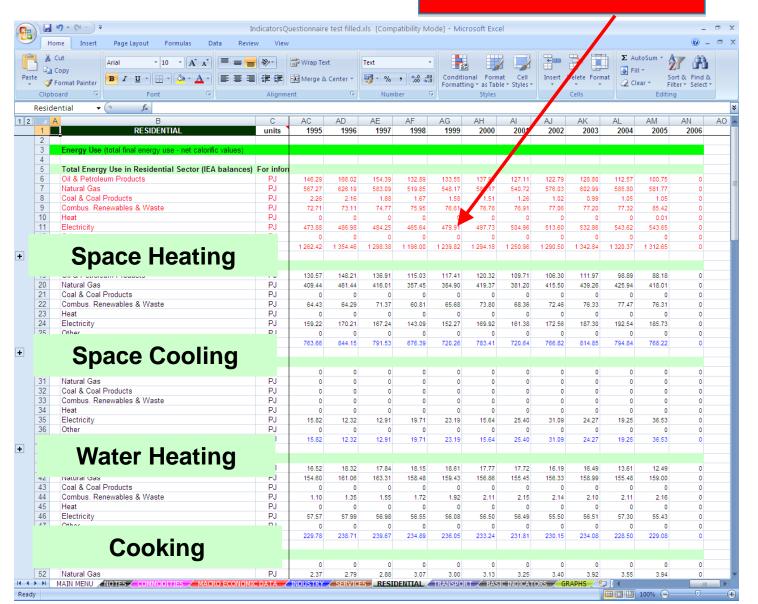
- Stock of vehicles
- Vehicle-kilometres
- Passenger-kilometres
- Tonne-kilometres

Efficiency indicators

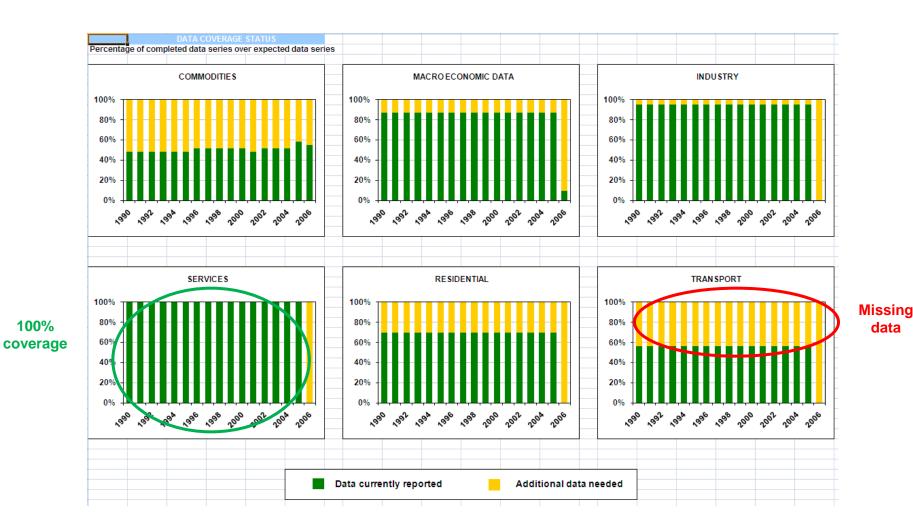
- Energy per passenger-kilometre
- Energy per tonne-kilometre

The transport sector

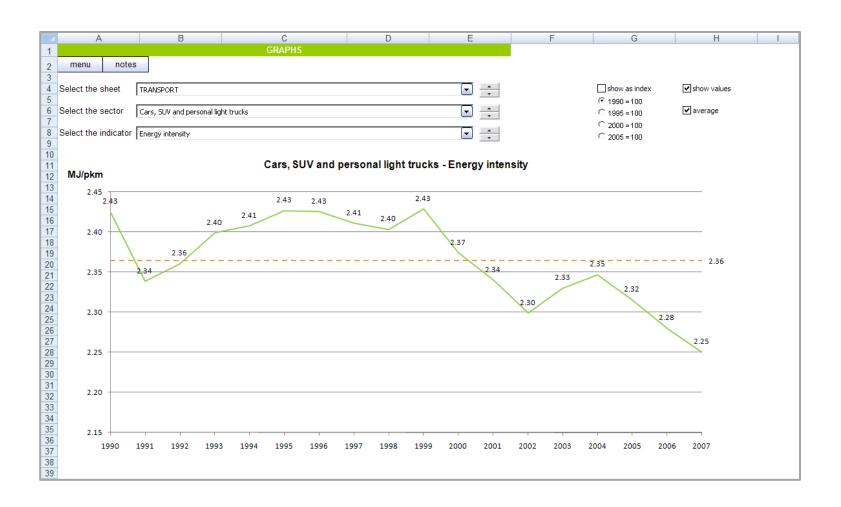
TRANSPORT	units	1990	1991 1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Passenger transport [passenger-kilometres]						<u> </u>											
	10 ⁹ pass-km	0)b	0	0	0	0	0	0	0		0	0	0	0	0
- gasoline (spark ignition) engine	ass-km	ه ک		0	0	0	0	0	0	0	0			0	0	0	0
- diesei (compression ignition) engine •		0		•	0	0	0	0	0	0	0		0	0	0	0	0
Motorcycles (2 wheelers) & 3 wheelers	10 ⁹ pass-km	0		•	0	0	0	0	0	0	0		0	0	0	0	0
Buses	10 ⁹ pass-km	<u>-</u>	ש אש		0	0	0	0	0	0	0		0	0	0	0	0
Passenger Trains	10 ⁹ pass-km			· ·	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic passenger airplanes	10 ⁹ pass-km 10 ⁹ pass-km	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic passenger ships	10 pass-km		0 0	, 0	- 0	- 0	- 0	U	- 0	U	U	U		- 0	U		U
Freight transport [tonne-kilometres]																	
Freight & Commercial road transport	10 ⁹ tonne-km	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁹ tonne-km	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- diesel (compression ignition) engine	109 +anna lon	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Freight trains To	nnes-km) o	0 0			_	0	0	0	0	0	0	0	0	0	0	0
Domestic freight airplanes	to tonne-km	0	0 0		~~	~~	0	0	0	0	0	0	0	0	0	0	0
Domestic freight ships	10 ⁹ tonne-km	0	0 0			~	0	0	0	0	0	0	0	0	0	0	0
						5 46 F											
Freight transport [tonnes]	106 +	_															
Freight & Commercial road transport	10 ⁶ tonnes	0	0 0				0	0	0	0	0			0	0	0	0
- gasoline (spark ignition) engine	10 ⁶ tonnes	0	0 0				0	0	0	0	0			0	0	0	0
- diesel (compression ignition) engine		0	0 0				0	0	0	0	0	0	0	0	0	0	0
	tonnes	0	0 0				0	0	0	0	0		0	0	0	0	0
Domestic freight airplanes	10° tonnes 10 ⁶ tonnes	0	0 0		-		0	0	0	0	0			0	0	0	0
Domestic freight ships	TO TONNES	0	0 0	, 0	0	0	0	U	0	0	0	0	0	0	0	0	0
Vehicle kilometres																	
Cars, SUV and personal light trucks	10 ⁹ vkm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁹ vkm	0	0 0	0	0	0	0	0	0	_		7 0	0	0	0	0	0
- diesel (compression ignition) engine	10 ⁹ vkm	0	0 0	0	0	0	0	0	N. C.	@			0	0	0	0	0
Motorcycles (2 wheelers) & 3 wheelers	10 ⁹ vkm	0	0 0) 0	0	0	0	0			/ /	0	0	0	0	0	0
Buses	10 ⁹ vkm	0	0 0	0	0	0	0	0		7 17 19 1		0	0	0	0	0	0
Passenger Trains	10 ⁹ vkm	0	0 0	0	0	0	0	0					0	0	0	0	0
Domestic passenger airplanes	Vala Iraa	0	0 0	0	0	0	0	0	H			0	0	0	0	0	0
Domestic passenger ships	Veh-km	0	0 0	0	0	0	0	0			\rightarrow	0	0	0	0	0	0
										- Down							
Freight & Commercial road transport	10 ⁹ vkm	0	0 0		0	0	0	0		A COMPANY			0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁹ vkm	0	0 0	-	0	0	0	0	7 8	San San			0	0	0	0	0
- diesel (compression ignition) engine	10 ⁹ vkm	0	0 0		0	0	0	0	1				0	0	0	0	0
Freight trains	10 ⁹ vkm	0	0 0		0	0	0	0				0	0	0	0	0	0
Domestic freight airplanes	10 ⁹ vkm	0	0 0	-	0	0	0	0	0	0	0		0	0	0	0	0
Domestic freight ships	10 ⁹ vkm	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle stocks (number of vehicles in use)																	
Cars, SUV and personal light trucks	10 ⁶	О	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁶	0	0 0		0	•	0	0	0	0	0			0	0	0	0
- diesel (compression ignition) engine	10 ⁶	0	0 0		0			0	0	0	0		0	0	0	0	0
Motorcycles (2 wheelers) & 3 wheelers	10 ⁶	0) 0		_		. 0	0	0	0		0	0	0	0	0
Buses	10 ⁶	0		0				0	0	0	0		0	0	0	0	0
Passenger Trains	10 ⁶		_	0		n		_ 0	0	0	0	0	0	0	0	0	0
Domestic passenger airplanes	10 ⁶			o o	n	n n		0	0	0	0	0	0	0	0	0	0
Domestic passenger ships	10 ⁶	n	o C	J 0	0		0	n		n	0	_		0	0	0	0
para paraenga, empa	ΙÚΥ										·	- 0					
Freight & Commercial road transport	10 ⁶	0	0			_			_		0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁶	0	0								0		0	0	0	0	0
- diesel (compression ignition) engine	10 ⁶	0			0	0			J 0		0	0	0	0	0	0	0
Freight trains	10 ⁶	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic freight airplanes	10 ⁶	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic freight ships	10 ⁶	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u> </u>																	

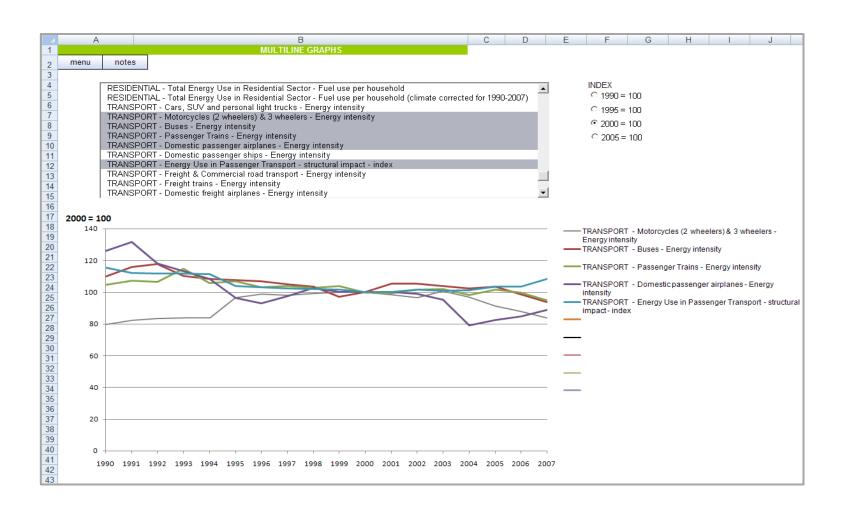

End-Use Coverage

Freight Passenger Other **Manufacturing Residential Services Transport Travel Industry Total** Food, beverages Car &light **Space heating** Agriculture, services & tobacco **Trucks** duty vehicles forestry **Water heating** Paper, pulp & Freight rail &fishing **Motorcycles** printing Cooking **Domestic** Mining **Buses Industrial** Lighting shipping Construction chemicals **Passenger Appliances Domestic** rail Electricity, Non-metallic air freight gas & water minerals **Passenger** ships **Primary metals Domestic Metal products &** planes equipment Other

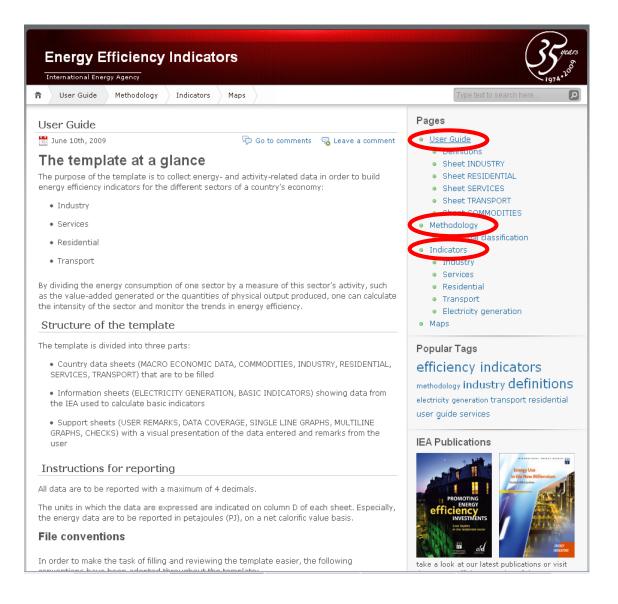

- 100

Pre-filled time series




A report on the coverage status is automatically updated when new data are entered.

Various options offered for plotting indicators



Possibility to compare indicators

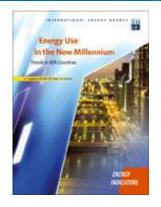
An electronic manual to help

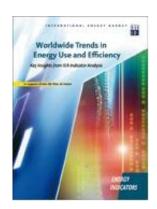
A few words on the validation process

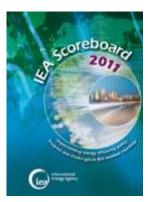
- Internal consistency
- Consistency with IEA energy balances
- Checks against secondary sources
- Plausibility
- Gross vs Net Calorific Value
- Coverage / definitions
- The aim is to try to understand "how" to help countries overcome the difficulties they face in providing quality data

Provides a starting point for collecting important data

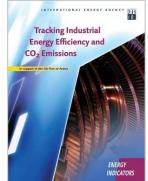
А	В	D	4007	M	N	0	P 2004	Q	R	S	2005	U	V	
	-	units	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	_
otal /	Energy Use in Residential Sector		+											
Mai L	Oil & Petroleum Products	PJ	309.42	323.61	288.04	294.10	286.82	286.66	292.16	294.44	273.65	274.13	300.58	
	Natural Gas	PJ	21.59	19.77	19.88	294.10	22.47	24.89	292.16	30.39	30.35	29.61	31.02	
	Combus. Renewables & Waste	PJ	21.59	282.33	283.59	284.98	267.09	266.24	267.03	266.65	266.43	264.60	263.24	
	Electricity	PJ	106.72	114.08	120.14	130.06	138.04	140.52	143.50	146.64	153.11	160.03	165.01	
	Other	PJ	0.73	0.82	0.91	1.04	1.24	1.38	1.59	1.77	2.02	2.25	2.60	
	Total	PJ	719.63	740.61	712.56	731.15	715.67	719.68	732.73	739.89	725.55	730.62	762.44	
	Total		719.03	/40.01	/12.50	737.10	115.01	/19.00	132.13	7.58.65	/ 25.55	/30.02	/02.44	
	Space Heating													
	Oil & Petroleum Products	PJ	0	0	0	0	0	4.01	3.38	2.72	2.27	2.26	3.18	
	Natural Gas	PJ	0	0	0	0	0	0.20	0.19	0.17	0.10	0.10	0.13	
	Combus. Renewables & Waste	PJ	0	0	0	0	0	0	0	0	0	0	0	
	Electricity	PJ	0	0	0	0	0	2.05	2.21	2.36	1.67	2.25	1.14	
~	Total	PJ	0	0	0	0	0	6.26	5.78	5.25	4.04	4.61	4.45	
	Total (climate corrected for 1990-2007)	PJ	#N/A	#N/A	#N/A	#N/A								
	Space Cooling		+											
	Electricity	PJ	0	0	0	0	0	8.82	8.71	8.62	13.00	11.02	14.85	
~	Total	PJ	0	0	0	0	0	8.82	8.71	8.62	13.00	11.02	14.85	
	Total (climate corrected for 1990-2007)	PJ	#N/A	#N/A	#N/A	#N/A								
	,	-												
	Water Heating													
	Oil & Petroleum Products	PJ	0	0	0	0	0	174.51	179.14	181.81	169.37	170.32	197.76	
	Natural Gas	PJ	0	0	0	0	0	15.17	17.47	18.76	18.79	18.41	20.46	
~	Total	PJ	0	0	0	0	0	189.68	196.61	200.57	188.16	188.74	218.23	
	Cooking		+											
	Oil & Petroleum Products	PJ	0	0	0	0	0	108.14	109.64	109.92	102.01	101.55	99.64	
	Natural Gas	PJ	0	0	0	0	0	9.52	10.79	11.47	11.45	11.09	10.43	
	Combus. Renewables & Waste	PJ	0	0	0	0	0	266.24	267.03	266.65	266.43	264.60	263.24	
	Electricity	PJ	0	0	0	0	0	0.20	0.22	0.25	0.42	0.51	0.26	
V	Total	PJ	0	0	0	0	0	384.10	387.68	388.28	380.31	377.76	373.57	
	Lighting		1											
	Electricity	PJ	0	0	0	0	0	41.17	42.24	43.34	43.67	45.61	46.26	
-	Total	PJ	0	0	0	0	0	41.17	42.24	43.34	43.67	45.61	46.26	


International Energy Agency Helps identifying data gaps and issues


Water Heating									
Oil & Petroleum Products	PJ	0	0	0	0	12.77	11.22	10.22	9.34
Natural Gas	PJ	0	0	0	0	5.19	5.15	5.07	5.02
Coal & Coal Products	PJ	0	0	0	0	0	0	0	0
Combus. Renewables & Waste	PJ	0	0	0	0	7.62	7.75	7.87	8.04
Heat	PJ	0	0	0	0	0	0	0.04	0.04
Electricity	PJ	2.18	2.05	2.14	2.22	3.94	3.31	2.76	2.34
Other	PJ	0	0	0	0	0	0	0	0
Total	PJ	2.18	2.05	2.14	2.22	29.52	27.42	25.96	24.79


Domestic passenger airplanes											
Jet Fuel & Aviation Gasoline	PJ	0.50	0.63	0.75	1.00	0.67	0.42	0.46	0.33	0.50	0.88
Other	PJ	0	0	0	0	0	0	0	0	0	0
Total	PJ	0.50	0.63	0.75	1.00	0.67	0.42	0.46	0.33	0.50	0.88
Energy intensity	MJ/pkm	2.07	2.50	2.20	2.37	0.99	0.27	0.19	0.12	0.14	0.19

Dissemination is essential

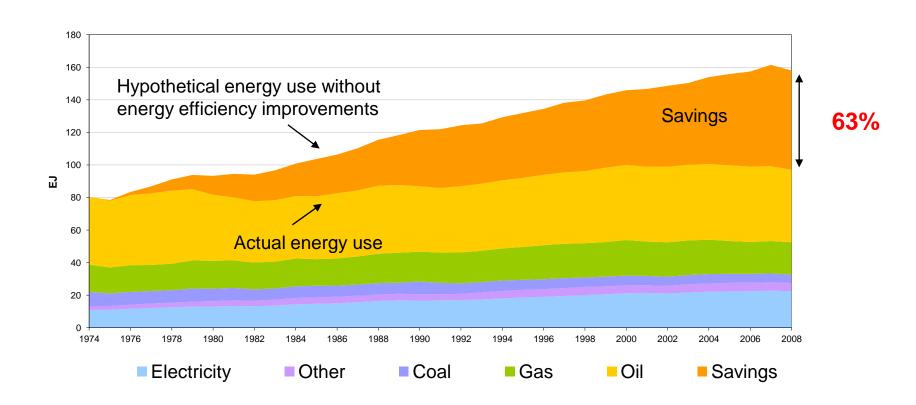


Energy Use in a New Millennium

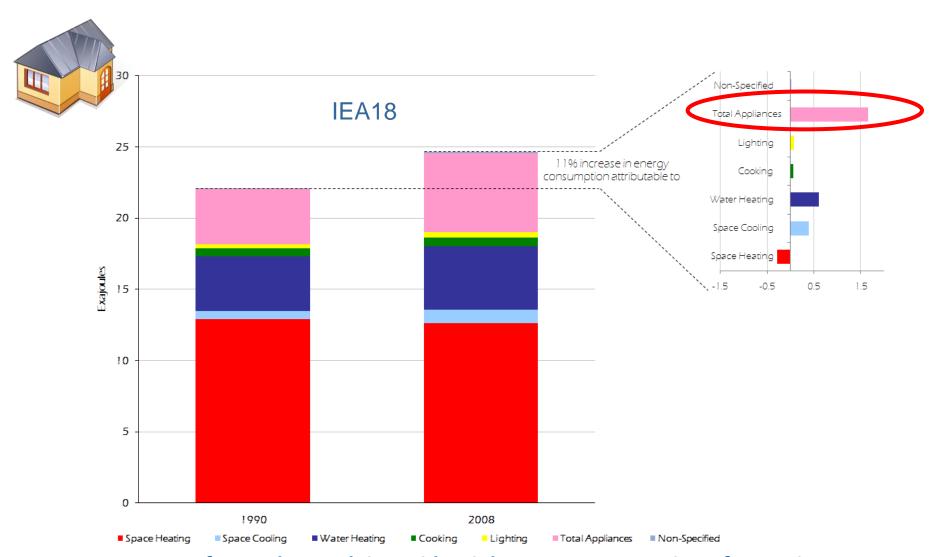
Tracking Industrial Energy Efficiency and CO₂ Emissions

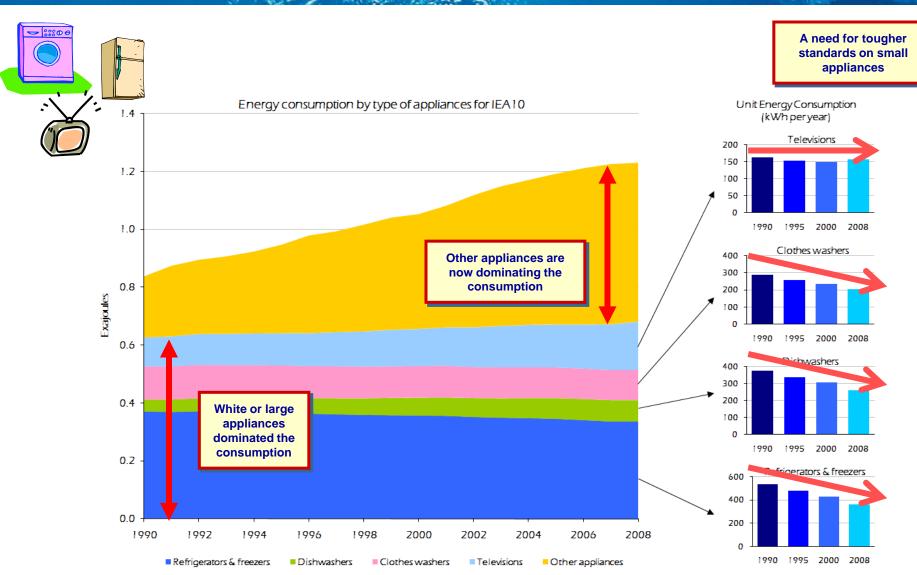

Worldwide Trends in Energy Use and Efficiency

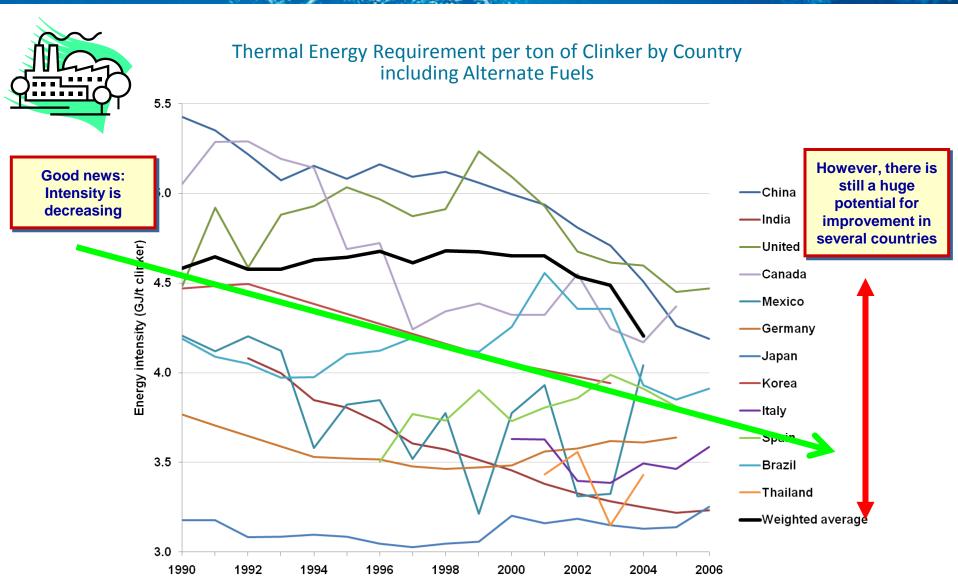
Towards a More Energy Efficient Future

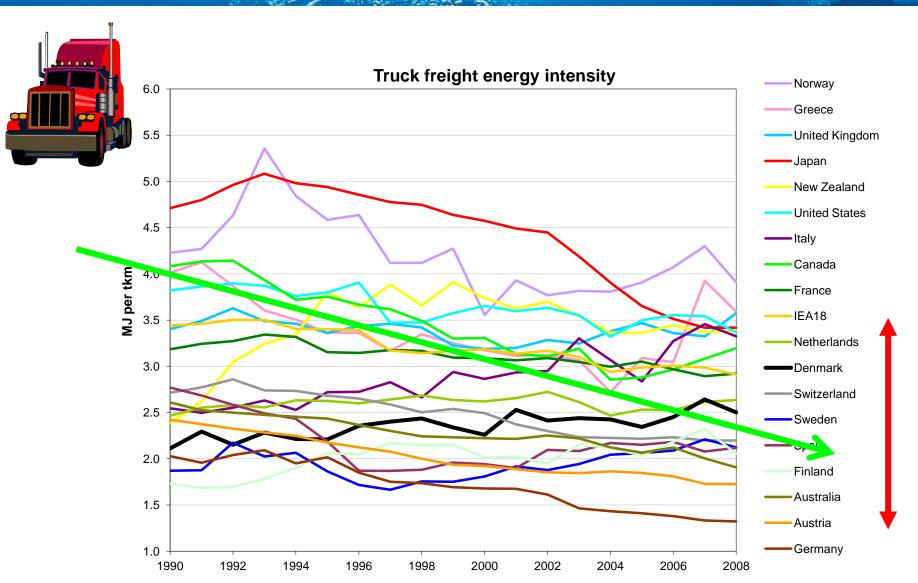


The IEA Scoreboard 2011




Without the savings from improved energy efficiency since 1974 in 11 IEA countries, energy use would now be 63% higher.


Out of a total growth in residential energy consumption of 2.5 EJ in 18 IEA member countries, 1.7 EJ is attributable to appliances and electronics

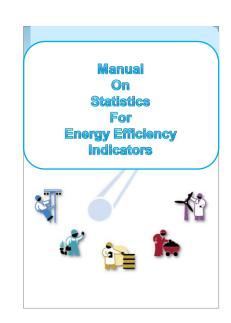


Most of the increase is due to "other appliances"

A manual to help statisticians

H OECD ((INTERNATIONAL **Energy Statistics** MANUAL A user-friendly manual to give necessary information to newcomers to understand/complete annual questionnaires

The Manual is now available in 10 languages and widely used all around the world



A manual on Statistics for Energy Efficiency Indicators

- The IEA is developing a Manual on Statistics for Energy Efficiency Indicators
 - To help countries to collect energy end-use and activity data for the development of energy efficiency indicators
 - To collect best practices from IEA member countries and beyond
 - In cooperation with the ODYSSEE network, APEC, countries, companies and associations
- Release expected in mid-2012

How to collect the data needed

- There is no universal recipe to collect those data. It depends on the needs, situation, time, resources.
- However, the most frequently used methodologies can be grouped into four main categories:
 - Surveys
 - Metering and Measuring
 - Modelling
 - Administrative Sources
- Each methodology has advantages and disadvantages, pros and cons, limits, associated costs, etc.

A quick overview of the table of contents

Foreword

Why a Manual

Describe the goals and purpose of the manual. Show the growing importance of energy efficiency in the energy policy world. Explain that currently only limited data are available to build meaningful energy efficiency indicators. The purpose of the book is to help bridge the gap and to provide examples of good and best practices to collect the data needed to build energy efficiency indicators.

Energy Efficiency Indicators: What are they?

Description of energy efficiency indicators, their importance, and their limits.

The Data behind the Indicators: How to collect them?

Provide general background information on energy-related data and activity-related data. The chapter will discuss how to collect data through four key approaches namely: Surveying, Measuring, Modeling and Administrative Sources.

Collecting What and How for the Residential Sector

(See the more detailed outline in the example on the residential chapter)

Collecting What and How for the Commercial and Public Services Sector

(See the residential chapter)

Collecting What and How for the Industry Sector

(See the residential chapter)

Collecting What and How for the Transport Sector

(See the residential chapter)

Validating and Disseminating

Discuss validation methods used for the different sectors. Also discuss best practices for effective data presentation and dissemination.

Annexes

- I. Selected good and best practices for the residential sector
- II. Selected good and best practices for the commercial sector
- III. Selected good and best practices for the industry sector
- IV. Selected good and best practices for the transport sector
- V. Specific issues (to be identified at a later stage)

A chapter at a glance

Residential

What does the residential sector mean and cover?

A brief discussion of what the residential sector is and what it does and does not include (such as transport).

Why is the residential sector important?

The residential sector accounts for a quarter of global total final consumption. However, there are huge variations between countries from less than 10% to more than 90%. There are many players having an influence on the energy consumption of the sector: households, policy makers, utilities, appliance manufacturers, architects.

What are the main end-uses driving the consumption of the sector?

A description of the main energy end-uses: heating, cooling, domestic hot water, lighting, cooking, appliances, etc. There are also large variations in the respective shares of the end-uses. It ranges from countries with a large share for heating in cold countries to a large share for cooking in developing countries which are highly dependent on fuelwood.

What are the most frequently used indicators?

A commented list of the most frequently used indicators for the residential sector. Indicators cover many different aspects: heating consumption per square meter, average electricity consumption per type of appliance, average lighting per household, etc. A discussion will be included on other useful indicators not directly considered as energy efficiency indicators, such as electrification rate, dependency on fuel wood.

The data behind the indicators

Most indicators include a numerator (an energy consumption) and a denominator (an activity data). A description will be provided of both energy consumption data and activity data needed to build the indicators mentioned in the previous paragraph.

How to collect the data?

This constitutes the main part of the chapter. A description of the most commonly used methodologies for collecting the data used to build indicators. Methodologies include surveys, metering, modeling, administrative sources. Selected examples will be given.

Specific issues with data on households

A list of the most common issues encountered in collecting the data. Examples of possible solutions to deal with those issues will be presented.

Communicating indicators effectively

If collecting data and building indicators are essential steps, preparing powerful graphs and other materials to disseminate the indicators is equally essential. Selected examples on how to make the indicators meaningful and powerful will be presented.

Example of template for good/best practice

Example of Data Collection Methodologies • Survey Sector Industry Method Survey Name of the Survey Energy consumption of small and medium sized enterprise in the industry Austria Who was Responsible Statistics Austria Aluminium, Iron and Steel, Cement, Pulp and Paper, Chemicals, Sectors covered All manufacturing sectors Economic activity NACE (Statistical Classification of Economic Activities in the European classification used Community) . To track over time energy consumption of the industry Survey purpose . To complement another data collection initiative Sample design/method Stratified random sampling Small and medium sized industrial establishments with more than Population description 3 employees and not included in the sample of the Material Input Statistics Collection method · Paper form by mail · Internet Frequency Every two years 2009 Last time Surveyed Required/voluntary NΑ Fine/incentive None Population size 30041 Sample size 3000 Response rate 28% Survey respondents · Total energy consumption of a facility Types of elements . Energy use by type of end-use collected (eq. boilers, motors, lighting, space heating, etc.) Energy sources and fuels Cost (thousand US\$) Time (weeks) Pre-survey design 10 NA Survey execution Data processing and analysis 3 NA Publication 0 NA Project management total Main challenges Low response rate · Inconsistent responses Response quality Possible improvements Larger sample · Face to face interviews Key best practice Small and simple questionnaire (only one A4 page) to increase the response rate, including quantities and monetary values to have some check possibilities, the online version of the questionnaire includes checks. Inconsistent and incomplete questionnaires (e.g. electricity and at least one fuel for space heating has to be filled in) cannot be submitted.

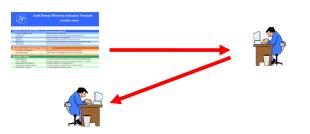
Copy of the Survey

Sector and Collection Method

Background

Data Collection

Time and Cost


Notes and Comments

A few words to conclude

The plan is to have the Manual complemented by a CD with survey forms, also available on Internet.

The IEA is now collecting statistics for energy efficiency indicators for the year 2009, and is actively working with countries, ODYSSEE, others to improve quality and coverage

The IEA will organise a 2-day workshop on energy efficiency indicators on 15-16 May 2012. Statisticians, Analysts, Policy Makers: The three faces of the same coin.

Cooperation is key to boost energy efficiencies world wide.

