Understanding the SME sector in Asia, with a focus on India and challenges in terms of improving energy efficiency

6th EMAK Workshop

Promoting Energy Efficiency in SMEs and Waste Heat Recovery Measures in India

Prosanto Pal TERI

25 February 2015 New Delhi

Outline

- Importance of SMEs
- Energy-intensive SMEs
- Challenges in up-scaling energy efficiency

SMEs are of strategic importance to all countries

- Backbone of a country's economy
- Provides most of the employment
- > Use locally available resources and skills
- > Caters to local markets
- Encourages technological innovation and entrepreneurship

Contribution of SMEs to Asian economy

- Account for 98% of enterprises and 70% of employment in Japan[#]
- Provide 60-70% of employment in Asian Tiger nations[#]
- 96 % of industrial establishments and 83 % of employment generation in industrial sector in Nepal[®]

William Masikiwa Goriwondo, (lecturer NUST) Small to Medium Enterprises (SMEs)'s critical role in the economy @Overview of Nepalese Small and Medium Enterprises, Chapter 3

Contribution of SME to Indian economy

- Number of SMEs: 44 million
- Highly labour intensive:
 100 million people
- Contributes to 8% of GDP,
 42% of exports and 45% of
 manufacturing output

Source: Annual Report 2012-13, Ministry of MSME, Government of India

Characteristics of Indian SMEs

- High percentage of units are in the micro and smallsized category
- Geographical clustered
- Large scope (20–40%) to save energy[#]

[#] Chapter 3: Technology transfer of Energy Efficeint Technologies among SMEs in India, Prosanto Pal and Girish Sethi in the book 'Low Carbon Technology Transfer: From Rhethoric to Reality', David Ockwell and Alexandra Mallet (eds.) 2012 Published by Routledge

Example of Indian foundry industry

- Third largest in the world after China and USA
- Employs 700,000 people
- > Out of 4,500 foundries, just 250 are in the organized sector
- Large percentage of micro and small units using inefficient technologies
- > 20 well known geographical clusters

Energy-intensive SMEs

- > About 200 'energy-intensive' SME clusters
 - Energy cost account for a major share of the operating costs
 - 15 product categories including casting, forging, glass, ceramics, food processing, textiles and so on
- Many products made for local markets e.g. jaggery, glass bangles, local food items

Technology characteristics of energy-intensive SMEs

- Conventional technologies which have remained unchanged for decades
 - High energy consumption
 - Moderate to high pollution
- Little R&D efforts
 - Underdeveloped support institutions and local service providers
 - Limited capacity to innovate
 - Low level of awareness; limited channels of communication

Need for research, development, demonstration and dissemination (RDD&D) on cleaner technologies

- Scope to match-make state-of-theart knowledge to customise technology for local needs
- Involve international and local institutions in R&D and demonstration
- Long-term 'hands-on' support for assimilation and dissemination

Demonstration plant set up by TERI-SDC at a foundry in Howrah

Energy performance

Coal saving t/yr. $CO_2 t/yr$.

Environment performance

Environmental performance

- 1. DBC-1: Cupola without pollution control
- 2. DBC-2 Existing pollution control system
- 3. Demonstration unit

Challenges in improving energy efficiency of SMEs

- Development and demonstration
 of new cleaner technologies
- Development of local delivery systems
- 'Hand-holding' during dissemination
- Enabling regulatory and financing environment

Thank you for your attention