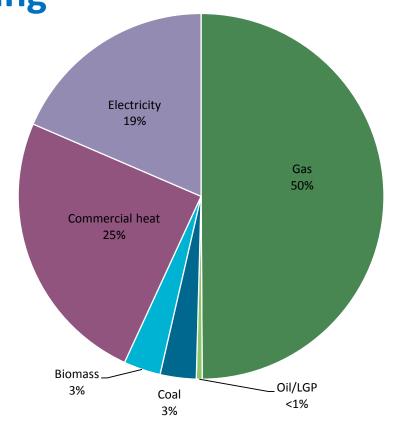

IEA Building Sector Strategies: Global and Ukraine

Marc LaFrance
Ukraine Workshop
23 March 2015

Importance of Buildings Sector

www.iea.org

- Largest end-use sector
- 1/3 carbon emissions
- 50% of electricity
- Major portion of GDP

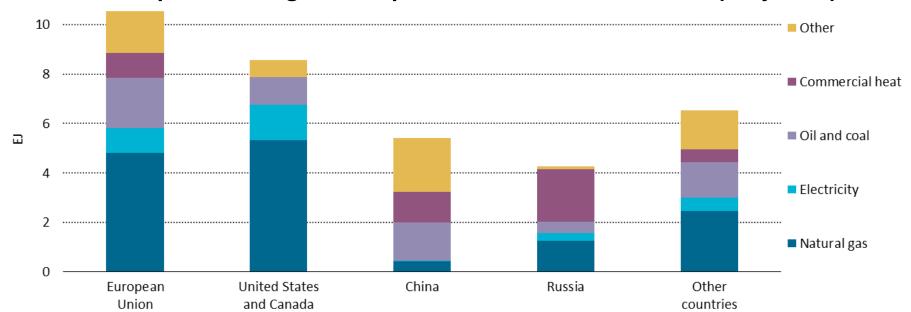


- Opportunities/challenges:
 - 75% 90% of OECD building stock still in service by 2050
 - Large population growth in developing world will drive new floor area that needs to be efficient (2.5 billion more by 2050)

Ukraine Building's Energy Balance (2012)

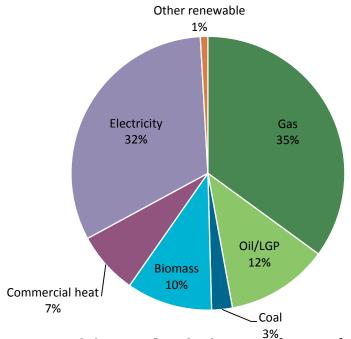
www.iea.org

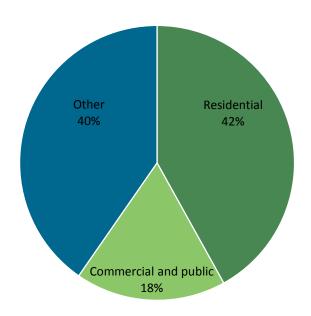
Major dependence on gas for space and water heating



Global Heating Impact

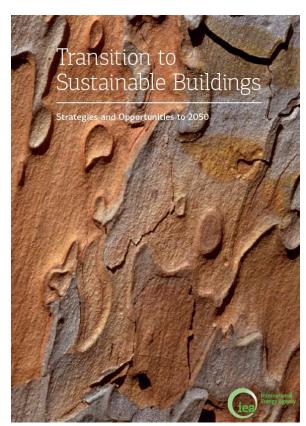
 Space heating is 30% globally of the buildings sector and with water heating up to 50%


Global space heating consumption and fuel shares in 2012 (exajoules)


EU Gas Dependence for Buildings

www.iea.org

 Gas represents 35% of EU building's fuel share, but around 60% of final energy gas consumption of the economy


EU28 Buildings fuel shares (2012)

EU28 Final energy gas shares (2012)

KEY IEA BUILDING PUBLICATIONS

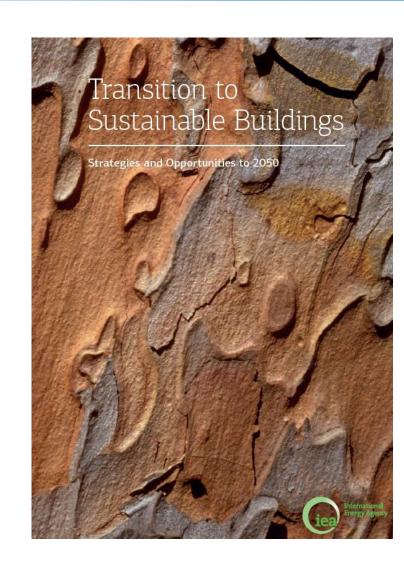
Technology Roadmap Energy efficient building envelopes

April 2014

Linking Heat and

Solutions for a Clean Energy Future

Electricity Systems


Co-generation and District Heating and Cooling

June 2013 Dec 2013

International Energy Agency 1974•2014 Transition to Sustainable Buildings: Strategies and Opportunities to 2050

www.iea.ora

- The overall ETP strategy for buildings
- Global and regional analysis, energy savings and emissions reduction forecasts
- Technical opportunities and recommendations: envelope; heating and cooling; appliances, lighting and cooking
- Policies to transform buildings

Priority Recommendations

www.iea.org

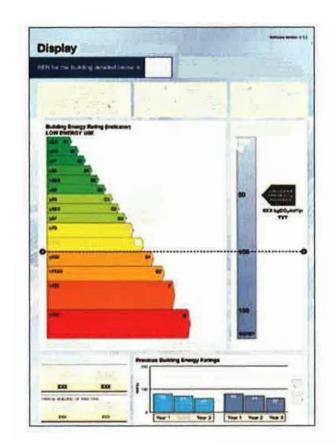
	ASEAN	Brazil	China	European Union	India	Mexico	Ukraine		soutn Africa	United States
Technology										
Advanced envelope – cold climate										
Reduced cooling loads – hot climates										
Heat pumps										
Solar thermal										
More efficient use of biomass										
Policy										
Building codes with supporting infrastructure								T		
Appliance and equipment standard										
Deep renovation of existing buildings										
Zero-energy new buildings										

Note: Recommendations limited to top two for technology and policy, all items could be relevant for most countries. Red indicates immediate priority, while gold indicates second priority.

Integrated Policies – Systems and Components

www.iea.ora

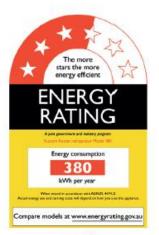
Promote integrated policy packages

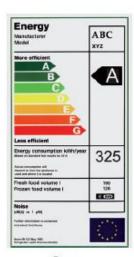

Deep renovation critical for Ukraine

- Building codes critical in emerging markets
- Systems level performance supported by advanced components

www.iea.org

- Energy Performance Certificates
- The "happy medium"
 - Many EU low quality, but high market uptake
 - United States high quality, very low market update
- Need to inspect property, measure air leakage, basic qualifications for rater



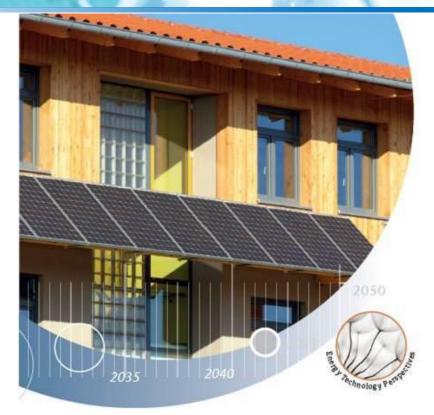

Ukraine Establishing its Own Buildings

1974-2014 Policies - Move Beyond EU

www.iea.org

- Many EU product labels need to be re-scaled: start with a "clean slate" and have real impact in the market place
- Some new EU country window labels have "A+" for what should be a "C": define with future in mind (ZEB or energy positive windows)

Example for Ukraine Criteria


EU	>	Ukraine					
A+++	>	А					
A++	>	В					
A+	>	С					
Α	>	D					
В	>	E					
С	>	F					
D	>	G					
E	>						
F	>						
G	>						

Technology Roadmap: Energy Efficient Building Envelopes

www.iea.org

- Construction transformation strategy
- Provides technical, economic and strategic framework
- Assessment of high priority areas for 12 regions of the world
- Policy criteria and evaluation

Technology Roadmap

Energy efficient building envelopes

Transformation to Low-Energy Buildings

www.iea.org

Transforming construction to low energy buildings

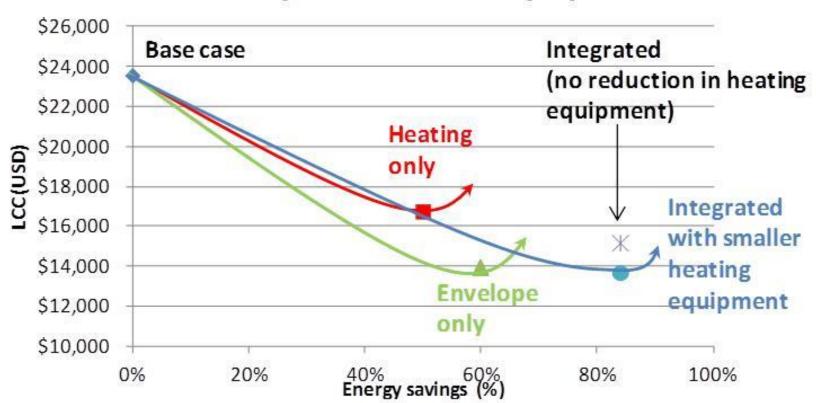
Inefficient – still common and old stock

- Single pane windows.
- No insulation.
- · High air leakage.

Typical building code in advanced regions

- · Low-e double glaze windows.
- High levels of insulation.
- Low air leakage.

Zero-energy buildings


- Highly insulated windows and dynamic solar control.
- Optimised designs and orientations.
- Daylighting.

KEY POINT: the world needs to shift from very old buildings to modern buildings, and then to low-energy or zero-energy buildings.

First Step - reduce the need for heating and cooling!!

Very poor existing building and equipment example but represents core life cycle cost economic analysis

LCC analysis of efficiency options

Key Strategies for Ukraine Buildings

www.iea.org

- Immediate solutions to reduce heating
 - Weatherisation, energy management, sub-metering, etc.
- Pursue deep energy renovation
 - Motivate market through public building renovation
 - Incentives for high performance components and large systems improvements (> at least 50% heat demand reduction)
 - Development banks need to look at aggregated building sector the same as large energy supply projects

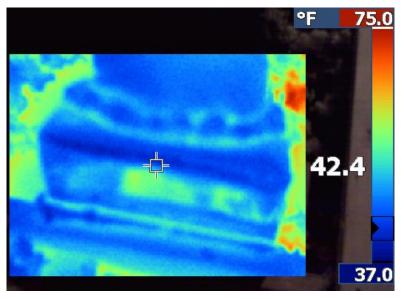
Key infrastructure outcome

- Long lasting human capacity development
- Mature high performance commodity technology options
- Manufacturing and construction job creation in lieu of energy import and more supply extraction

Air Sealing

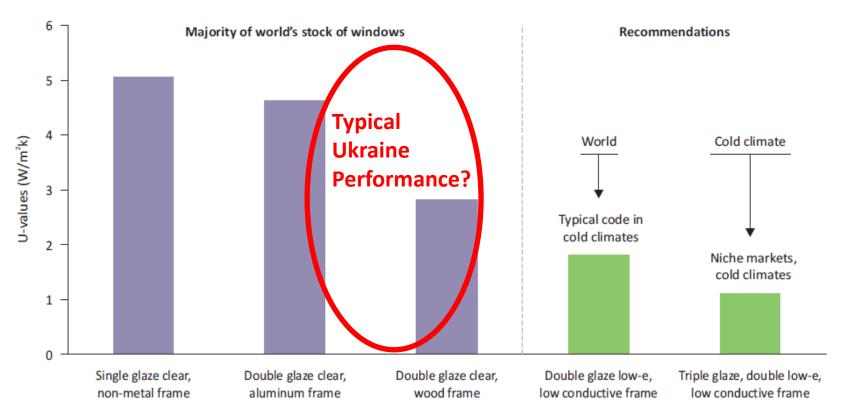
- Validated air sealing is a critical measure for building codes and renovation
- Testing of large multi-family buildings can be expensive – possible to institute sampling and workmanship criteria to reduce cost
- More research needed to offer more affordable testing but many low cost and simple solutions exist today

Source: Oak Ridge National Laboratory


Air Sealing – Immediate and Cost Effective

www.iea.org

- Air sealing is very important
 - Typically 10% to 30% heat reduction
- Performance can be verified
 - Infrared camera, air leakage, statistical sampling, etc

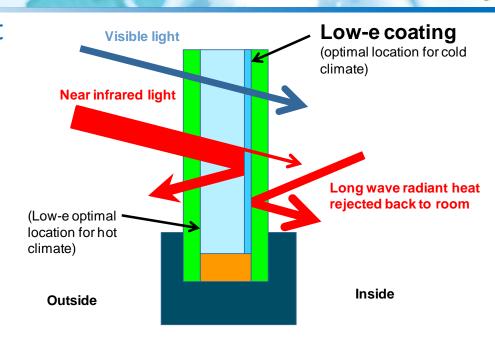


Windows Market/Opportunity

www.iea.org

Figure 3: Most common types of windows in service and being sold today

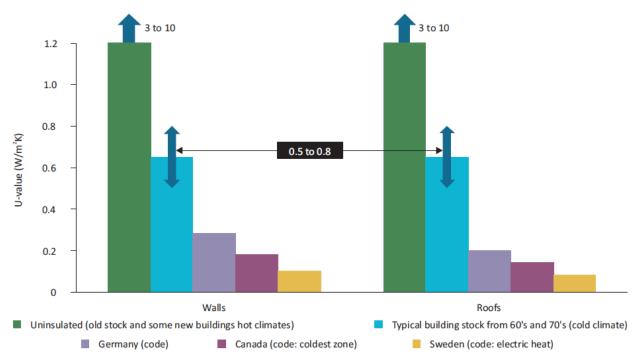
Note: U-values presented in this roadmap represent whole-window performance unless noted in accordance with ISO 15099, thus an ISO 10077 standard of 1.0 W/m²K is roughly equal to 1.1 W/m²K per ISO 15099.


KEY POINT: the majority of the world's installed windows can be significantly improved and more work is needed to ensure that new sales meet more stringent performance criteria.

What is Low-e (low emissivity) Glass?

www.iea.org

- Transparent metal coatings that reflect radiant heat (long wave radiation)
- Often combined with solar selective coatings that reflect visible light and near-infrared light (heat we feel)
- In winter, low-e glass reflects heat back into the building and in summer reflects heat back outside from the sun
- Immediate retrofit low-e storm panels and low-e window films when window replacement is not possible



What is the Ukraine current market share of low-e?

Insulation Opportunity

- Very stringent U-values in coldest climate zone
- IEA recommending goal for average wall and roof U-values ≤ 0.15
 W/m2K cold climate, ≤ 0.35 W/m2K hot climate based on LCC

Source: Adapted from IEA (2013a), "Transition to Sustainable Buildings: Strategies and Opportunities to 2050", Organisation for Economic Co-operation and Development (OECD) Publishing, Paris.

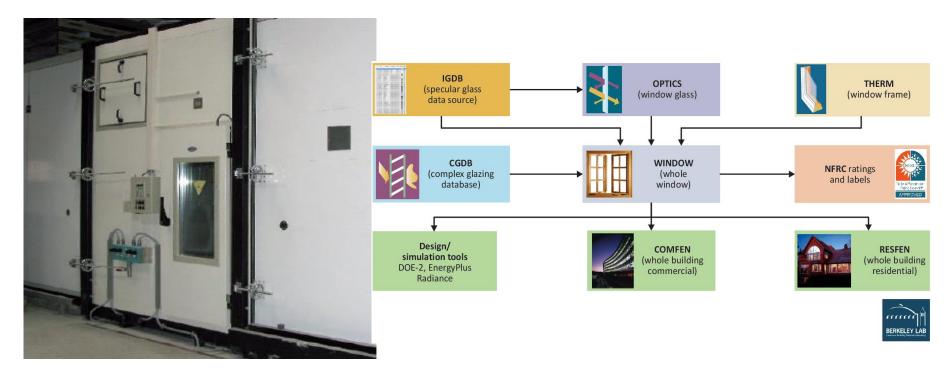
Exterior Insulation

www.iea.org

- Best approach to reduce thermal shorts
- Part of "stucco" types of systems
- Applicable to all buildings, new/existing, commercial/residential

Before

After


Source: Sto Corporation

Performance Research: Essential in Emerging Economies – Global Priority

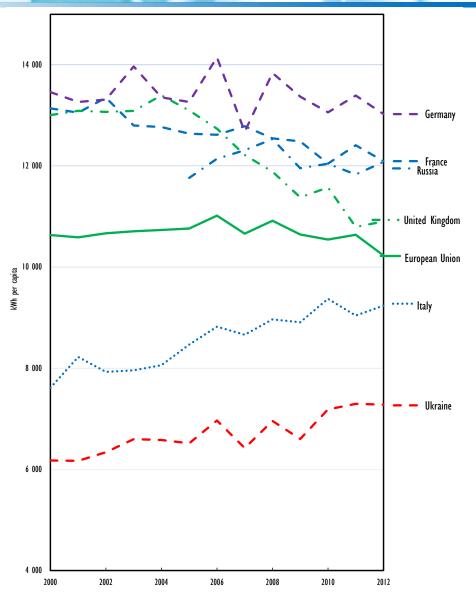
www.iea.org

- Construction material energy performance ratings are essential
- Ukraine can pursue collaborative effort including government, academia, and industry – supports building codes and can drive market for commodity priced EE product availability

Criteria for Policy Self-Assessments to Promote Efficient Construction

- Ukraine can use IEA criteria to conduct self-evaluation among policy, technology, industry and academia experts
- If progress is not made, EE construction will be stagnant

Policies	ASEAN	Brazil	China	European Union	India	Japan/ Korea	Mexico	Middle East	Australia/ New Zealand	Russia	South Africa	United States/ Canada
Governance	L	М	Н	Н	М	М	М	L	М	L	М	М
Energy prices	L	М	М	Н	М	Н	L	L	М	L	М	М
Infrastructure and human capacity	М	L	М	Н	М	Н	М	L	М	М	М	Н
Commodity of efficient materials	L	М	Н	Н	М	Н	М	L	М	М	L	Н
Voluntary programmes	L	L	L	М	L	L	L	L	L	L	L	L
Mandatory building codes	L	L	М	Н	L	М	М	L	М	М	М	Н


Note: H: high, M: medium, L: low

Pending Report - Joint IEA/IPEEC Study on Building Energy Performance Metrics

www.iea.org

- Focused on G20 and MEF countries
- Example with Ukraine, final building energy consumption per capita (kwh/person)
- Ukraine is much lower but growing!
- Increased GDP drives larger spaces, more comfort, appliances, electronics, etc

Next Steps

- Significant investment needed for immediate and longer term comprehensive renovations
- Building energy efficiency and advanced district heating optimised for total system benefits
- Move towards local manufacturing and construction jobs instead of energy supply extraction and import (a core Ukraine and EU strategy)

Contact Data

International Energy Agency

9, rue de la Federation

757 Paris Cedex 15, France

P Marc LaFrance, CEM

Energy Analyst Buildings Sector Lead, Energy Technology Division

marc.lafrance@iea.org, +33 (0)1 40 57 67 38

Buildings - www.iea.org/topics/energyefficiency/subtopics/sustainablebuildings/