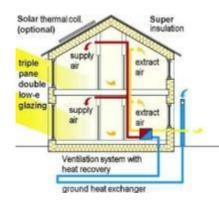


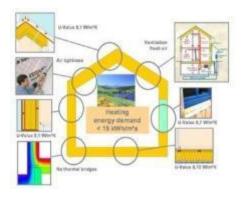
The 1st in Ukraine OptimaHouse

SAINT-GOBAIN

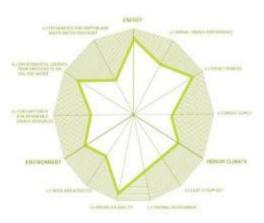
Meeting the needs of current generation <u>should</u> <u>not</u> threaten the needs of the following generation.

OPTIMA HOUSE


* The UN General Assembly.
 Report of the World Commission on Environment and Development. 1987
 Source: WWF report «Living planet - 2012»



Buildings that do not create problems but resolve them - as the basis for OptimaHouse project



active house

 $q < 15 \ kWh/m^2 per year$

energy efficiency + comfort + environment

Building that give more than they consume

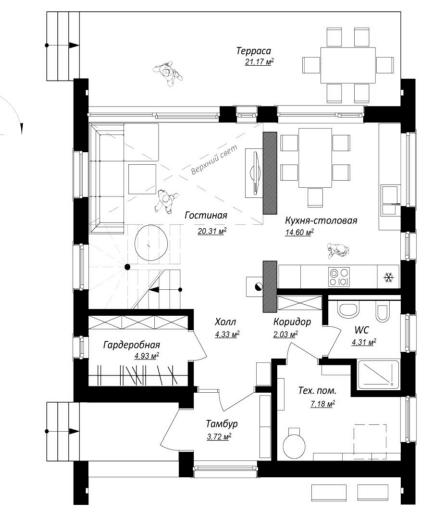
Project partners

Schneider Belectric

The 1st in Ukraine OptimaHouse

20 km from Kiev area 128 sq.m

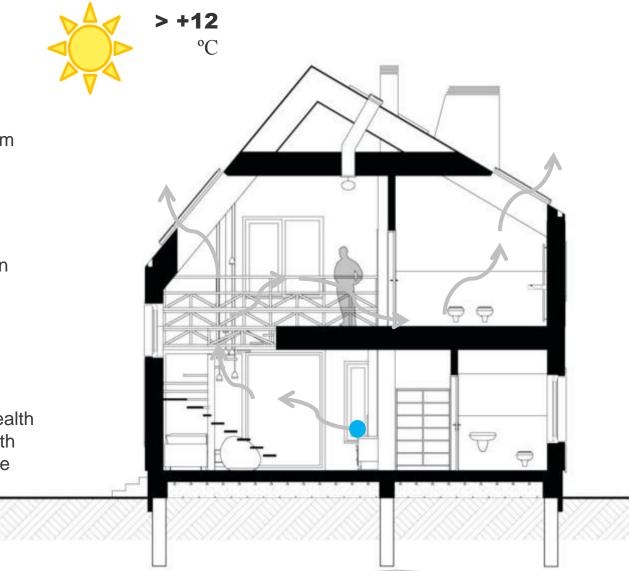
for the family of 3-4 persons



Ν

Layout

1 floor



2 floor

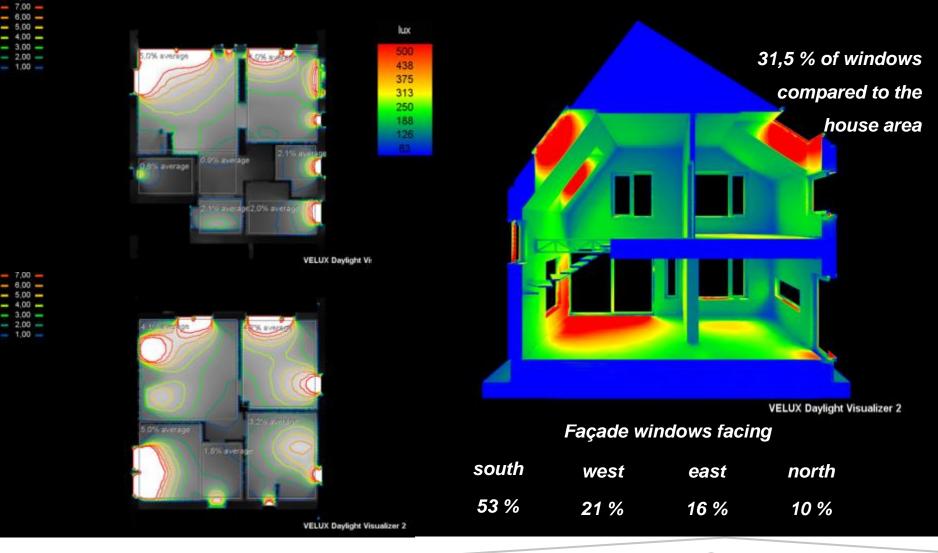
Fresh air all the time

CO₂ concentration is measured in ppm (parts per million)

CO₂ concentration in atmosphere:

280 ppm – before industrial revolution400 ppm – nowadays600-800 ppm – in the cities

Indoor CO₂ concentration:


More than 1000 ppm – harmful for health More than 800 ppm – effects on health Less than 700 ppm – in OptimaHouse

Daylight Factor 8.00

Optimal lightning with natural daylight

Engineering equipment

Alternative and renewable energy sources

- Heat pump air-to-water, air-to-air
- Solar collectors
- PV panels

Heating

- Heated floors
- Ceramic infrared panels
- Air heating

Ventilation

- Forced-air ventilation with heat recovery 87%

Smart House system

- KNX platform from Schneider Electric

Zeitinder ComfoAir 550

ISOVER HB

- wind-, moisture barrier from outside (walls, roof)

ISOVER Profi λ 0.37

- thermal insulation of building envelope (walls, roof)

ISOVER Vario KM Duplex

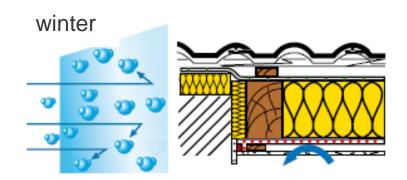
- vapour barrier from inside (walls, roof)

ISOVER Vario KB

- multipurpose tape for gluing of joints and overlapping of superdiffusion membranes and vapour barriers

ISOVER Vario DS

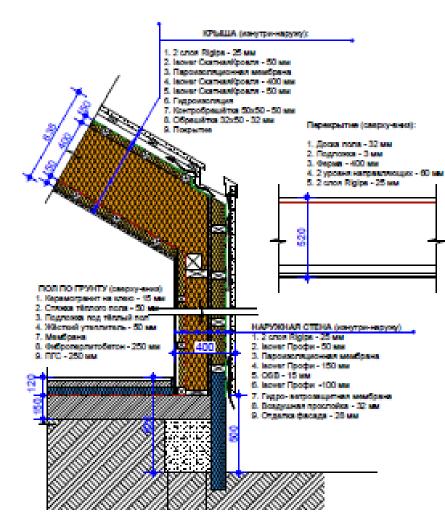
- flexible sealant for isolation of vapour barrier joints to frame elements and building envelope elements


ISOVER Vario MultiTape

- vapour barrier from inside (walls, roof)

Vapour barrier

- allows construction to breathe;
- provides fast drying of wooden elements;
- resistance to UV radiation;
- high strength;
- does not become wet and does not change its shape during operation time.



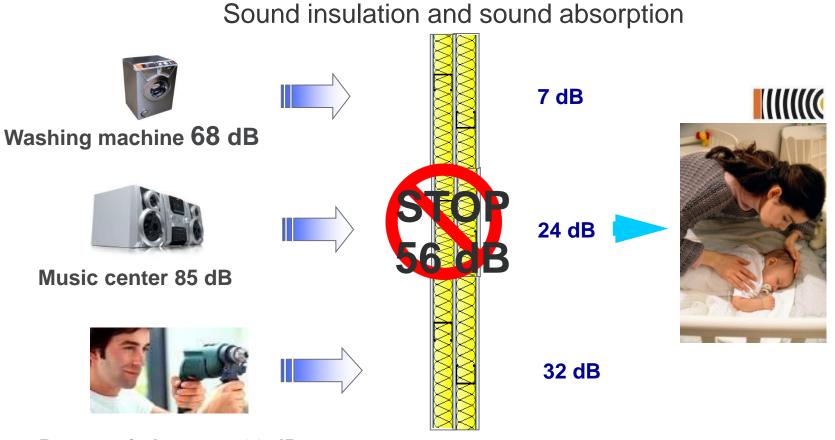
summer

Roof, façade

- thermal resistance of façade construction R
 = 7.31 (300 mm)
- thermal resistance of roof construction -R = 12.19 (500 mm)
- airborne noise suppression 70 dB
- thermal uniformity of roof and façade is close to 0,8

Rigips PRO Hydro GKBI 12,5mm

- plasterboard for internal application, are basis for interior decoration


ISOVER SoundProtect

- sound insulation of internal constructions (partitions, floors), professional materials for acoustic insulation

Interior partitions

Pneumatic hammer 93 dB

ТЕПЛОЭНЕРГЕТИЧЕСКИЙ ПАСПОРТ ЗДАНИЯ


Адрес здания	Украина, Киевская обл., Бородянский р-н, с. Микуличи, коттеджный городок "Биг-Бен", участок 3Б				
Заказчик	Группа компаний, представляющие торговые марки: Veka, Saint- Gobain, Velux, Schneider Electric, Metrotile, Доступне Житло				
Название	OptimaHouse				
Год строительства	2014 (планируется)				
Отапливаемая площадь, м2	141,4				
Отапливаемый объём, м3	421,0				
Размещение в застройке	Отдельно стоящее здание				
Назначение и тип	Индивидуальный жилой дом усадебного типа				
Конструктивное решение	Деревянный каркас с заполнением минеральной ватой				
Источник энергии для отопления	Тепловой насос "воздух-воздух" Mitsubishi PUHZ-SHW80V				
Вентиляция	Механическая с рекуперацией Mitsubishi Lossnay LGH-35RX5-E Эффективность утилизации тепла 72-75 %				

Примечание: Теплоэнергетический паспорт составлен по методологии белорусского ТКП 45-2.04-196-2010 "Тепловоя защита зданий, Теплоэнергетические характеристики. Правила определения" и Изменения №1 ТКП 45-2.04-196-2010 с учётом требованих украинских ДСТУ-Н Б А.2.2-5:2007, ДБН 8.2.6-31:2006, ДСТУ-Н Б В.1.1-27:2010

Показатель	Обозначение показателя и единица измерения		Нормативное значение показателя	Фактическое значение показателя
Расчетный удельный расход тепловой энергии на отопление здания	q_n^{des} .	кВт-ч/м ² в год	37,44	
		MDH/M ²	134,77	
		«Вт-ч/м ³ в год	12,57	
		МДж/м ³	45,3	
Нормативный удельный расход тепловой энергии на отопление здания	q_h^{req} .	KBT-4/M ² B rog	136,29	
		МДж/м ²	490,65	
		МДж/м ³	-	
Класс по потреблению тепловой энергии на отопление и вентиляцию	Α			
Соответствует ли проект здания нормативному требованию	ДА		-73%	

Рейтинг расхода тепловой энергии на отопление и вентиляцию здания:

t int	rc	Расход, кВт-ч/м2 в год	Отклонение от нормы в %	Класс
при 15 °С	2658	11,7	-91%	Α
при 18 °C	3186	24,1	-82%	
при 20 °C	3583	32,4	-76%	
при 22 °С	3890	40,7	-70%	
при 25 °C	4418	53,1	-61%	

* При расчёте Q^{ibest} при разных температурах внутреннего воздуха принималось количество градусо-суток по формуле D_d = (t_{an} - t_{al}): Z_m, вместо 3750, а показатели температур внутреннего, наружного воздуха и продолжительность отопительного периода по Табл. 2 ДСТУ-Н Б 8.1.1-27:2010

OPTIMA HOUSE advantages over standard class houses

- 1. Approximate cost of $1 \text{ m}^2 = 1000 \text{ USD}$.
- 2. Low energy consumption level.
- 3. High acoustic comfort.
- 4. Always comfortable environment.
- 5. Clean and fresh air.
- 6. High level of natural daylight.
- 7. Smart House system.
- 8. Alternative energy sources.
- 9. Premium quality materials.
- 10. Innovative European developments in construction sector.
- 11. Unique design.

Thank you for your attention!

